https://www.lydsy.com/JudgeOnline/problem.php?id=1016

现在给出了一个简单无向加权图。你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树。(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的)。由于不同的最小生成树可能很多,所以你只需要输出方案数对31011的模就可以了。

无外乎两种:K算法和P算法(当然还有第三种但是我不会(滑稽)

P算法没法解于是用K算法。

发现K算法的正确性后其实我们需要做的工作就是从K算法找到一些边,可以用另一些边权一样的边替换并且是一棵生成树即可。

于是我们枚举即可。

(当然你会有两个问题:1.为什么边权一样即可替换,2.前面的边的操作对后面边是否有影响?)

(所以暴力选手不过脑子的话就很轻松的敲完代码走人了(比如我))

(实际为两个定理,分别为:

1.不同的最小生成树中,每种权值的边出现的个数是确定的。

2.不同的生成树中,某一种权值的边连接完成后,形成的联通块状态是一样的 。

百度一下。)

https://blog.csdn.net/jarily/article/details/8902402可能这个解释靠谱些?)

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cctype>
#include<cstdio>
#include<vector>
#include<cmath>
using namespace std;
typedef long long ll;
const int N=;
const int M=;
const int p=;
inline int read(){
int X=,w=;char ch=;
while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
struct node{
int u,v,w;
}e[M];
struct range{
int l,r;
}a[M];
int fa[N],t[M],n,m,k,sum;
inline bool cmp(node a,node b){
return a.w<b.w;
}
int find(int x){
if(fa[x]==x)return x;
return find(fa[x]);
}
inline void unionn(int x,int y){
fa[x]=y;
}
inline void destory(int x,int y){
fa[x]=x;fa[y]=y;
}
void dfs(int l,int r,int d,int w){
if(l>r){
if(d==t[w])sum=(sum+)%p;
return;
}
if(r-l++d<t[w])return;
int u=find(e[l].u),v=find(e[l].v);
if(u!=v&&d<t[w]){
unionn(u,v);
dfs(l+,r,d+,w);
destory(u,v);
}
dfs(l+,r,d,w);
}
int main(){
n=read(),m=read();
for(int i=;i<=m;i++){
e[i].u=read(),e[i].v=read(),e[i].w=read();
}
sort(e+,e+m+,cmp);
for(int i=;i<=n;i++)fa[i]=i;
int cnt=;
for(int i=;i<=m;i++){
if(e[i].w!=e[i-].w){
a[++k].l=i;a[k-].r=i-;
}
int u=e[i].u,v=e[i].v;
u=find(u),v=find(v);
if(u!=v)t[k]++,cnt++,unionn(u,v);
}
a[k].r=m;
if(cnt!=n-){
puts("");return ;
}
int ans=;
for(int i=;i<=n;i++)fa[i]=i;
for(int i=;i<=k;i++){
if(!t[i])continue;
sum=;
dfs(a[i].l,a[i].r,,i);
ans=(ll)ans*sum%p;
for(int j=a[i].l;j<=a[i].r;j++){
int u=e[j].u,v=e[j].v;
u=find(u),v=find(v);
if(u!=v)unionn(u,v);
}
}
printf("%d\n",ans);
return ;
}

+++++++++++++++++++++++++++++++++++++++++++

+本文作者:luyouqi233。               +

+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/ +

+++++++++++++++++++++++++++++++++++++++++++

BZOJ1016:[JSOI2008]最小生成树计数——题解的更多相关文章

  1. bzoj1016: [JSOI2008]最小生成树计数(kruskal+dfs)

    1016: [JSOI2008]最小生成树计数 题目:传送门 题解: 神题神题%%% 据说最小生成树有两个神奇的定理: 1.权值相等的边在不同方案数中边数相等  就是说如果一种方案中权值为1的边有n条 ...

  2. bzoj1016 [JSOI2008]最小生成树计数

    1016: [JSOI2008]最小生成树计数 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3517  Solved: 1396[Submit][St ...

  3. BZOJ1016:[JSOI2008]最小生成树计数(最小生成树,DFS)

    Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...

  4. [bzoj1016][JSOI2008]最小生成树计数 (Kruskal + Matrix Tree 定理)

    Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...

  5. 【Matrix-tree定理】【并查集】【kruscal算法】bzoj1016 [JSOI2008]最小生成树计数

    题意:求一个图的最小生成树个数. 矩阵树定理:一张无向图的生成树个数 = (度数矩阵 - 邻接矩阵)的任意一个n-1主子式的值. 度数矩阵除了对角线上D[i][i]为i的度数(不计自环)外,其他位置是 ...

  6. [BZOJ1016][JSOI2008]最小生成树计数(结论题)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1016 分析: 首先有个性质:如果边集E.E'都可以表示一个图G的最小生成树(当然E和E ...

  7. [BZOJ1016] [JSOI2008] 最小生成树计数 (Kruskal)

    Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...

  8. 【最小生成树】BZOJ1016: [JSOI2008]最小生成树计数

    Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...

  9. 2018.09.24 bzoj1016: [JSOI2008]最小生成树计数(并查集+搜索)

    传送门 正解是并查集+矩阵树定理. 但由于数据范围小搜索也可以过. 我们需要知道最小生成树的两个性质: 不同的最小生成树中,每种权值的边出现的个数是确定的 不同的生成树中,某一种权值的边连接完成后,形 ...

随机推荐

  1. Visual Studio 智能提示功能消失解决办法

    步骤如下: 开始菜单 -->所有程序-->Visual Studio 2012文件夹 --> Visual Studio Tools --> Developer Command ...

  2. 「暑期训练」「基础DP」免费馅饼(HDU-1176)

    题意与分析 中文题就不讲题意了.我是真的菜,菜出声. 不妨思考一下,限制了我们决策的有哪些因素?一,所在的位置:二,所在的时间.还有吗?没有了,所以设dp[i][j]" role=" ...

  3. hdu1045Fire Net(经典dfs)

    Fire Net Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Su ...

  4. Unity编辑器 - 鼠标悬停在控件上时改变鼠标样式

    Unity编辑器 - 鼠标悬停在控件上时改变鼠标样式 摘自Unity文档 EditorGUIUtility.AddCursorRect public static void AddCursorRect ...

  5. Vue 编程之路(三)—— Vue 中子组件在父组件的 v-for 循环里,父组件如何调取子组件的事件

    (标题的解决方案在第二部分) 最近公司的一个项目中使用 Vue 2.0 + element UI 实现一个后台管理系统的前端部分,属于商城类型. 一.前期思路: 其中在“所有订单”页面,UI 给的设计 ...

  6. linux 命令行基础

    命令行基础 一些名词 「图形界面」 「命令行」 「终端」 「shell」 「bash」 安装使用 Windws: 安装git, 打开 gitbash Linux 打开终端 Mac 打开终端 基本命令 ...

  7. 【shell 练习2】产生随机数的方法总结

    一.产生随机数 ()RANDOM 产生随机数 [root@localhost ~]# echo $RANDOM [root@localhost ~]# )) #想要生成八个随机数,随便加一个八位的数字 ...

  8. 理解Python中的__builtin__和__builtins__

    以Python 2.7为例,__builtin__模块和__builtins__模块的作用在很多情况下是相同的. 但是,在Python 3+中,__builtin__模块被命名为builtins. 所 ...

  9. eos开发指南

    十分钟教你开发EOS智能合约 在CSDN.柏链道捷(PDJ Education).HelloEOS.中关村区块链产业联盟主办的「EOS入门及最新技术解读」专场沙龙上,柏链道捷(PDJ Educatio ...

  10. vue移动音乐app开发学习(一):环境搭建

    本系列文章是为了记录学习中的知识点,便于后期自己观看.如果有需要的同学请登录慕课网,找到Vue 2.0 高级实战-开发移动端音乐WebApp进行观看,传送门. 一:使用vue-cli脚手架搭建: 1: ...