【codevs1380】没有上司的舞会 树形dp
题目描述
Ural大学有N个职员,编号为1~N。他们有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司。每个职员有一个快乐指数。现在有个周年庆宴会,要求与会职员的快乐指数最大。但是,没有职员愿和直接上司一起与会。
第一行一个整数N。(1<=N<=6000)
接下来N行,第i+1行表示i号职员的快乐指数Ri。(-128<=Ri<=127)
接下来N-1行,每行输入一对整数L,K。表示K是L的直接上司。
最后一行输入0,0。
输出最大的快乐指数。
7
1
1
1
1
1
1
1
1 3
2 3
6 4
7 4
4 5
3 5
0 0
样例输出
5
题解
裸的树形dp。
f[x]代表x参加时最大快乐指数,g[x]代表x不参加时最大快乐指数。
那么易推得f[x]=r[x]+∑g[son[x][i]],g[x]=∑max(f[son[x][i]],g[son[x][i]])。
答案即为max(f[root],g[root])。
#include <stdio.h>
#include <vector>
using namespace std;
int f[6001] , g[6001] , r[6001];
bool mark[6001];
vector<int> son[6001];
void dp(int x)
{
f[x] = r[x];
int i , y;
for(i = 0 ; i < (int)son[x].size() ; i ++ )
{
y = son[x][i];
dp(y);
f[x] += g[y];
g[x] += max(f[y] , g[y]);
}
}
int main()
{
int n , i , x , y , root = 0;
scanf("%d" , &n);
for(i = 1 ; i <= n ; i ++ )
scanf("%d" , &r[i]);
for(i = 1 ; i <= n - 1 ; i ++ )
{
scanf("%d%d" , &x , &y);
mark[x] = 1;
son[y].push_back(x);
}
scanf("%d%d" , &x , &y);
for(i = 1 ; i <= n ; i ++ )
if(!mark[i])
root = i;
dp(root);
printf("%d\n" , max(f[root] , g[root]));
return 0;
}
【codevs1380】没有上司的舞会 树形dp的更多相关文章
- CodeVS1380 没有上司的舞会 [树形DP]
题目传送门 没有上司的舞会 题目描述 Description Ural大学有N个职员,编号为1~N.他们有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.每个职员有一个 ...
- 『没有上司的舞会 树形DP』
树形DP入门 有些时候,我们需要在树形结构上进行动态规划来求解最优解. 例如,给定一颗\(N\)个节点的树(通常是无根树,即有\(N-1\)条无向边),我们可以选择任意节点作为根节点从而定义出每一颗子 ...
- [luogu]P1352 没有上司的舞会[树形DP]
本Lowbee第一次写树形DP啊,弱...一个变量写错半天没看出来...... 题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点 ...
- 洛谷P1352 没有上司的舞会——树形DP
第一次自己写树形DP的题,发个博客纪念`- 题目来源:P1352 没有上司的舞会 题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结 ...
- 没有上司的舞会 树形dp
题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职员都会增加一定的快乐指数Ri, ...
- P1352 没有上司的舞会——树形DP入门
P1352 没有上司的舞会 题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职员 ...
- P1352 没有上司的舞会[树形dp]
题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职员都会增加一定的快乐指数Ri, ...
- P1352 没有上司的舞会&&树形DP入门
https://www.luogu.com.cn/problem/P1352 题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的 ...
- 洛谷 P1352 没有上司的舞会 树形DP板子
luogu传送门 题目描述: 某大学有n个职员,编号为1~n. 他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司. 现在有个周年庆宴会,宴会每邀请来一个职员都会 ...
随机推荐
- APP如何发布到Google play 商店
APP如何发布到Google play 商店?以及有哪些需要注意的点 2015-05-13 10:07 19773人阅读 评论(1) 收藏 举报 分类: iPhone游戏开发(330) 链接:ht ...
- 成都Uber优步司机奖励政策(3月28日)
滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...
- HDU 5972 Regular Number
Regular Number http://acm.hdu.edu.cn/showproblem.php?pid=5972 题意: 给定一个字符串,求多少子串满足,子串的第i位,只能是给定的数(小于等 ...
- python版protobuf 安装
转自:http://www.tuicool.com/articles/VfQfM3 1. 下载protobuf源代码(当前最新版本为:2.5.0) #cd /opt #wget https://pro ...
- mysql表的核心元数据
索引的 mysql> show indexes from recordsInRangeTest; +--------------------+------------+------------- ...
- ServletContext详解 以及用法
ServletContext,是一个全局的储存信息的空间,服务器开始,其就存在,服务器关闭,其才释放.request,一个用户可有多个:session,一个用户一个:而servletContext,所 ...
- python——一些常用的方法类
测试的时候经常需要使用一些方法都整理放在一起,方便调用 首先一些基本的配置引入 localReadConfig = readConfig.ReadConfig() proDir = readConfi ...
- flask源码走读
Flask-Origin 源码版本 一直想好好理一下flask的实现,这个项目有Flask 0.1版本源码并加了注解,挺清晰明了的,我在其基础上完成了对Werkzeug的理解部分,大家如果想深入学习的 ...
- 373. Partition Array by Odd and Even【LintCode java】
Description Partition an integers array into odd number first and even number second. Example Given ...
- Vuejs 实现简易 todoList 功能 与 组件
todoList 结合之前 Vuejs 基础与语法 使用 v-model 双向绑定 input 输入内容与数据 data 使用 @click 和 methods 关联事件 使用 v-for 进行数据循 ...