BZOJ4735 你的生命已如风中残烛(组合数学)
将每个位置上的数都-1,则显然相当于前缀和始终非负。
然后就是完全想不到的了。考虑往里面加一张-1的牌。假设在一个合法排列的最后添上一个-1,那么在该排列的所有循环同构排列中,满足前m个前缀和都非负的排列只有原合法排列,因为如果更换开头的话显然有sm+1-shead-1<=sm+1<0。并且对于每一种循环同构排列,都存在一个满足前m个前缀和都非负的排列,因为只要取最小前缀和的后一个为开头即可,证明类似。这样的排列去掉最后一个数就对应了一个合法排列,而显然这样的排列个数就是循环同构排列的种类数,也即m!。同时每一张-1牌都可能位于末尾,而不管是哪张,对应的合法排列可以看成相同的,所以再除以(m+1-n)。
- #include<iostream>
- #include<cstdio>
- #include<cmath>
- #include<cstdlib>
- #include<cstring>
- #include<algorithm>
- using namespace std;
- #define ll long long
- #define N 42
- #define P 998244353
- char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
- int gcd(int n,int m){return m==?n:gcd(m,n%m);}
- int read()
- {
- int x=,f=;char c=getchar();
- while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
- while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
- return x*f;
- }
- int n,m,a[N],ans=;
- int inv(int a)
- {
- int s=;
- for (int k=P-;k;k>>=,a=1ll*a*a%P) if (k&) s=1ll*s*a%P;
- return s;
- }
- int main()
- {
- #ifndef ONLINE_JUDGE
- freopen("bzoj4735.in","r",stdin);
- freopen("bzoj4735.out","w",stdout);
- const char LL[]="%I64d\n";
- #else
- const char LL[]="%lld\n";
- #endif
- n=read();
- for (int i=;i<=n;i++) m+=(a[i]=read())--;
- for (int i=;i<=m;i++) ans=1ll*ans*i%P;
- cout<<1ll*ans*inv(m+-n)%P;
- return ;
- }
BZOJ4735 你的生命已如风中残烛(组合数学)的更多相关文章
- BZOJ4735:你的生命已如风中残烛(组合数学)
Description 众所周知,萌萌哒六花不擅长数学,所以勇太给了她一些数学问题做练习.但是今天六花酱不想做数学题,于是他们开始打牌. 现在他们手上有m张不同的牌,牌有两种:普通牌和功能牌.功能牌一 ...
- BZOJ4735 你的生命已如风中残烛 【数学】
题目链接 BZOJ4735 题解 给定一个序列,有的位置为\(w_i - 1\),有的位置为\(-1\),问有多少种排列,使得任意前缀和非负? 我们末尾加上一个\(-1\),就是要保证除了末尾外的前缀 ...
- [LOJ#2329]「清华集训 2017」我的生命已如风中残烛
[LOJ#2329]「清华集训 2017」我的生命已如风中残烛 试题描述 九条可怜是一个贪玩的女孩子. 这天她在一堵墙钉了 \(n\) 个钉子,第 \(i\) 个钉子的坐标是 \((x_i,y_i)\ ...
- 2018.10.30 uoj#273. 【清华集训2016】你的生命已如风中残烛(组合数学)
传送门 组合数学妙题. 我们把这mmm个数都减去111. 然后出牌的地方就变成了−1-1−1. 然后发现求出每个位置的前缀和之后全部都是非负数. 考虑在最后加入一个−1-1−1构成一个m+1m+1m+ ...
- uoj#273. 【清华集训2016】你的生命已如风中残烛(组合数学)
传送门 一道打表题 我们把那些普通牌的位置看成\(-1\),那么就是要求有多少个排列满足前缀和大于等于\(1\) 考虑在最后放一个\(-1\),那么就是除了\(m+1\)的位置前缀和都要大于等于\(1 ...
- 洛谷 P6672 - [清华集训2016] 你的生命已如风中残烛(组合数学)
洛谷题面传送门 题解里一堆密密麻麻的 Raney 引理--蒟蒻表示看不懂,因此决定写一篇题解提供一个像我这样的蒟蒻能理解的思路,或者说,理解方式. 首先我们考虑什么样的牌堆顺序符合条件.显然,在摸牌任 ...
- UOJ273 [清华集训2016] 你的生命已如风中残烛 【数学】
题目分析: 把$0$卡牌看成$-1$.题目要求前缀和始终大于等于$1$. 最后添加一个$-1$,这样除了最后一位之外大于等于1,最后一位等于0. 构造圆排列.这样的话一个圆排列只有一个满足的情况,然后 ...
- 【UOJ】#273. 【清华集训2016】你的生命已如风中残烛
题目链接:http://uoj.ac/problem/273 $${Ans=\frac{\prod _{i=1}^{m}i}{w-n+1}}$$ #include<iostream> #i ...
- uoj#344. 【清华集训2017】我的生命已如风中残烛(计算几何)
题面 传送门 题解 orzxyx 首先我们发现,一个点如果被到达大于一次,那么这个点肯定在一个环上.所以在不考虑环的情况下每个点只会被到达一次,那么我们就可以直接暴力了 简单来说,我们对每个点\(i\ ...
随机推荐
- crontab执行PHP
在stackoverflow上看到一个问题:http://stackoverflow.com/questions/14015543/crontab-php-wget-or-curl 有三种通过cron ...
- Redis系列八 使用Jedis
使用Jedis jar操作Redis 1.配置redis.conf文件,修改 2.建java工程,加入 jedis jar包 3.代码示例: package com.ntjr.redis; impor ...
- 探索 Flask
探索 Flask 探索 Flask 是一本关于使用 Flask 开发 Web 应用程序的最佳实践和模式的书籍.这本书是由 426 名赞助人 在 Kickstarter 上 于 2013 年 7 月资助 ...
- 【转】关于cocos2dx+lua注册事件函数详解
转载:http://www.taikr.com/article/1605 registerScriptTouchHandler 注册触屏事件registerScriptTapHandler注册点击事件 ...
- Office 365 E3功能
本文简要总结了Office 365E3的功能
- leetcode9_C++判断一个整数是否是回文数
判断一个整数是否是回文数.回文数是指正序(从左向右)和倒序(从右向左)读都是一样的整数. 示例 1: 输入: 输出: true 示例 2: 输入: - 输出: false 解释: 从左向右读, 为 - ...
- AC 自动机——多模式串匹配
网站上的敏感词过滤是怎么实现的呢? 实际上,这些功能最基本的原理就是字符串匹配算法,也就是通过维护一个敏感词的字典,当用户输入一段文字内容后,通过字符串匹配算法来检查用户输入的内容是否包含敏感词. B ...
- 2019-1-7Xiaomi Mi5 刷全球版MIUI教程
2019-1-7Xiaomi Mi5 刷全球版MIUI教程 mi5 教程 小书匠 欢迎走进zozo的学习之旅. 前言 固件下载 刷机 刷recovery,root 试用体验 其他参考 前言 机器是老 ...
- 硬件电路中VCC,VDD,VEE,VSS有什么区别
电路中GND和GROUND.VCC,VDD,VEE,VSS有什么区别 一.解释 DCpower一般是指带实际电压的源,其他的都是标号(在有些仿真软件中默认的把标号和源相连的)VDD:电源电压(单极器件 ...
- Ubuntu 基础操作 基础命令 热键 man手册使用 关机 重启等命令使用
. : 关机, 如果将Linux默认运行等级设置为0, 系统将无法启动; -- : 多用户模式, 允许使用网络文件系统, 一般不使用图形界面登陆就是这种模式; -- : 多用户图形界面模式, 该模式下 ...