Pandas I/O API是一套像pd.read_csv()一样返回Pandas对象的顶级读取器函数。

读取文本文件(或平面文件)的两个主要功能是read_csv()read_table()。它们都使用相同的解析代码来智能地将表格数据转换为DataFrame对象 -

pandas.read_csv(filepath_or_buffer, sep=',', delimiter=None, header='infer',
names=None, index_col=None, usecols=None)
Python

形式2-

pandas.read_csv(filepath_or_buffer, sep='\t', delimiter=None, header='infer',
names=None, index_col=None, usecols=None)
Python

以下是csv文件数据的内容 -

S.No,Name,Age,City,Salary
1,Tom,28,Toronto,20000
2,Lee,32,HongKong,3000
3,Steven,43,Bay Area,8300
4,Ram,38,Hyderabad,3900
Csv

将这些数据保存为temp.csv并对其进行操作。

S.No,Name,Age,City,Salary
1,Tom,28,Toronto,20000
2,Lee,32,HongKong,3000
3,Steven,43,Bay Area,8300
4,Ram,38,Hyderabad,3900

read.csv

read.csv从csv文件中读取数据并创建一个DataFrame对象。

import pandas as pd
df=pd.read_csv("temp.csv")
print (df)
Python

执行上面示例代码,得到以下结果 -

   S.No    Name  Age       City  Salary
0 1 Tom 28 Toronto 20000
1 2 Lee 32 HongKong 3000
2 3 Steven 43 Bay Area 8300
3 4 Ram 38 Hyderabad 3900
Shell

自定义索引

可以指定csv文件中的一列来使用index_col定制索引。

import pandas as pd

df=pd.read_csv("temp.csv",index_col=['S.No'])
print (df)
Python

执行上面示例代码,得到以下结果 -

        Name  Age       City  Salary
S.No
1 Tom 28 Toronto 20000
2 Lee 32 HongKong 3000
3 Steven 43 Bay Area 8300
4 Ram 38 Hyderabad 3900
Shell

转换器
dtype的列可以作为字典传递。

import pandas as pd
import numpy as np
df = pd.read_csv("temp.csv", dtype={'Salary': np.float64})
print (df.dtypes)
Python

执行上面示例代码,得到以下结果 -

S.No        int64
Name object
Age int64
City object
Salary float64
dtype: object
Shell

默认情况下,Salary列的dtypeint,但结果显示为float,因为我们明确地转换了类型。

因此,数据看起来像浮点数 -

  S.No   Name   Age      City    Salary
0 1 Tom 28 Toronto 20000.0
1 2 Lee 32 HongKong 3000.0
2 3 Steven 43 Bay Area 8300.0
3 4 Ram 38 Hyderabad 3900.0

header_names
使用names参数指定标题的名称。

import pandas as pd
import numpy as np df=pd.read_csv("temp.csv", names=['a', 'b', 'c','d','e'])
print (df)
Python

执行上面示例代码,得到以下结果 -

      a       b    c          d       e
0 S.No Name Age City Salary
1 1 Tom 28 Toronto 20000
2 2 Lee 32 HongKong 3000
3 3 Steven 43 Bay Area 8300
4 4 Ram 38 Hyderabad 3900
Shell

观察可以看到,标题名称附加了自定义名称,但文件中的标题还没有被消除。 现在,使用header参数来删除它。

如果标题不是第一行,则将行号传递给标题。这将跳过前面的行。

import pandas as pd
import numpy as np df=pd.read_csv("temp.csv",names=['a','b','c','d','e'],header=0)
print (df)
Python

执行上面示例代码,得到以下结果 -

   a       b   c          d      e
0 1 Tom 28 Toronto 20000
1 2 Lee 32 HongKong 3000
2 3 Steven 43 Bay Area 8300
3 4 Ram 38 Hyderabad 3900
Shell

skiprows

skiprows跳过指定的行数。参考以下示例代码 -

import pandas as pd
import numpy as np df=pd.read_csv("temp.csv", skiprows=2)
print (df)
Python

执行上面示例代码,得到以下结果 -

   2     Lee  32   HongKong  3000
0 3 Steven 43 Bay Area 8300
1 4 Ram 38 Hyderabad 3900
Shell
 

Pandas IO工具的更多相关文章

  1. Python pandas.io.data 模块迁移

    这段时间用pandas做数据分析, import pandas.io.data as web 然后得到下面的错误提示 "The pandas.io.data module is moved ...

  2. pandas.io.common.CParserError: Error tokenizing data. C error: Expected 1 fields in line 526, saw 5

    pandas.io.common.CParserError: Error tokenizing data. C error: Expected 1 fields in line 526, saw 5 ...

  3. Linux IO工具 iotop备择方案iopp

    iotop毫无疑问linux IO检测上是一个很好的工具,但苦于要求和内核版本Python版本号.我的很多朋友放弃了.我也是.无意中发现iopp,使用c书面,与此iotop它是一个作用.nice! 一 ...

  4. Linux下查看进程IO工具iopp

    Linux下的IO检测工具最常用的是iostat,不过iostat只能查看到总的IO情况.如果要细看具体那一个程序点用的IO较高,可以使用iotop .不过iotop对内核版本和Python版本有要求 ...

  5. Pandas 计算工具介绍

    # 导入相关库 import numpy as np import pandas as pd 统计函数 最常见的计算工具莫过于一些统计函数了.首先构建一个包含了用户年龄与收入的 DataFrame i ...

  6. Pandas IO 操作

    数据分析过程中经常需要进行读写操作,Pandas实现了很多 IO 操作的API 格式类型 数据描述 Reader Writer text CSV read_csv to_csv text JSON r ...

  7. python数据分析学习(1)pandas一维工具Series讲解

    目录 一:pandas数据结构介绍   python是数据分析的主要工具,它包含的数据结构和数据处理工具的设计让python在数据分析领域变得十分快捷.它以NumPy为基础,并对于需要类似 for循环 ...

  8. 性能工具-io工具

    I/O:某网上问题通过top  iotop pidstat vmstat 工具定位出io高原因,内存不够.

  9. apache.commons.io.IOUtils: 一个很方便的IO工具库(比如InputStream转String)

    转换InputStream到String, 比如 //引入apache的io包 import org.apache.commons.io.IOUtils; ... ...String str = IO ...

随机推荐

  1. JavaServlet实现下载功能

        我们在项目中经常会用到下载功能,所以今天我们先说下下载功能实现的思路,然后通过一个案例代码来具体体现. 1.下载的思路: ①首先要获取我们要操作的文件对象的路径 ②然后使用获取的文件对象路径构 ...

  2. REDO 的内容:改变向量

    REDO 的内容 ---改变向量 redo的内容并不是sql语句,他是放的一些改变,叫改变向量. 数据库恢复的时候并不是执行sql语句,而是一个物理的过程,是一个数据块的覆盖.是改变数据块的大小. 可 ...

  3. VS2010 / MFC + OpenCV 2.4.1打开图片

    Windows 7 x64,VS2010 / MFC + OpenCV 2.4.1打开图片显示到Picture控件中. OpenCV 2.2.OpenCV 2.3同样适用. 工具/原料 WinXP / ...

  4. Unicode 和 UTF-8 是什么关系?

    2015-10-14 10:08    评论: 9 收藏: 4 转载自: http://huoding.com/2015/10/13/472作者: 火丁笔记本文地址:https://linux.cn/ ...

  5. java final 关键词

    package day9; /** * Created by admin on 2018/11/17. * final可以修饰类,方法,变量 特点: final可以修饰类,该类不能被继承. final ...

  6. linux命令行与shell脚本编程 -----15控制脚本

    常见的Linux系统信号 信号 值 描述 1 SIGHUP 挂起进程 2 SIGINT 终止进程 3 SIGQUIT 停止进程 9 SIGKILL 无条件终止进程 15 SIGTERM 可能的话终止进 ...

  7. Oracle Shared Pool 原理

    Oracle Shared Pool 原理 由于shared pool中最重要的是library cache,所以本文主要讲解Library cache的结构,library cache latch, ...

  8. WCF经典代码

    Array.CreateInstance(typeof(object), methodCall.Args.Length) 1. DataContractSerializer支持的类型......... ...

  9. Socket类的用法

    原文:http://www.cnblogs.com/Elijah/archive/2011/11/29/2268047.html Socket可以理解成一个IP地址加一个端口,构成的一个“插座”... ...

  10. netty5----心跳

    netty3心跳: package com.heart; import java.net.InetSocketAddress; import java.util.concurrent.Executor ...