连通性·三

时间限制:10000ms
单点时限:1000ms
内存限制:256MB

描述

暑假到了!!小Hi和小Ho为了体验生活,来到了住在大草原的约翰家。今天一大早,约翰因为有事要出去,就拜托小Hi和小Ho忙帮放牧。

约翰家一共有N个草场,每个草场有容量为W[i]的牧草,N个草场之间有M条单向的路径。

小Hi和小Ho需要将牛羊群赶到草场上,当他们吃完一个草场牧草后,继续前往其他草场。当没有可以到达的草场或是能够到达的草场都已经被吃光了之后,小hi和小Ho就把牛羊群赶回家。

一开始小Hi和小Ho在1号草场,在回家之前,牛羊群最多能吃掉多少牧草?

举个例子:

图中每个点表示一个草场,上部分数字表示编号,下部分表示草场的牧草数量w。

在1吃完草之后,小Hi和小Ho可以选择把牛羊群赶到2或者3,假设小Hi和小Ho把牛羊群赶到2:

吃完草场2之后,只能到草场4,当4吃完后没有可以到达的草场,所以小Hi和小Ho就把牛羊群赶回家。

若选择从1到3,则可以到达5,6:

选择5的话,吃完之后只能直接回家。若选择6,还可以再通过6回到3,再到5。

所以该图可以选择的路线有3条:

1->2->4 		total: 11
1->3->5 total: 9
1->3->6->3->5: total: 13

所以最多能够吃到的牧草数量为13。

本题改编自USACO月赛金组

提示:强连通分量

输入

第1行:2个正整数,N,M。表示点的数量N,边的数量M。1≤N≤20,000, 1≤M≤100,000

第2行:N个正整数,第i个整数表示第i个牧场的草量w[i]。1≤w[i]≤100,000

第3..M+2行:2个正整数,u,v。表示存在一条从u到v的单向路径。1≤u,v≤N

输出

第1行:1个整数,最多能够吃到的牧草数量。

样例输入
6 6
2 4 3 5 4 4
1 2
2 4
1 3
3 5
3 6
6 3
样例输出
13

无向图和有向图缩点时稍有不同。有向图要加一个instack的判断。运行Tarjan算法的过程中,每个顶点都被访问了一次,且只

进出了一次堆栈,每条边也只被访问了一次,所以该算法的时间复杂度为O(N+M)。

 解释一下instack的作用:

如图,右图无向图,显然,是个双连通分量,可以缩点。

而左图,1-->2,产生dfn[1]=low[1]=1;low[5]=dfn[5]=2;

1-->2-->3-->4产生了dfn[4]=low[4]=5;如果4-->5不判断是instack,则会产生low[4]=dfn[5]=2;然后把不是环的{1,2,3,4}当成环,

缩点错误。

原因是 4-->5是横向边,不会产生环,所以我们加instack,就是用来判断是否为横向边。

    else if(instk[v]) low[u]=min(low[u],dfn[v]);

 

当然,kosaraju算法就不用考虑这么多,其优点就是很直观。

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<vector>
using namespace std;
#define LL long long
const int maxm=;
int Laxt[maxm],Next[maxm],To[maxm],cnt;
int w[maxm],dfn[maxm],low[maxm],times;
int q[maxm],head,scc_cnt,scc[maxm],n,instk[maxm];
LL V[maxm],Max;
vector<int>G[maxm];
void add(int u,int v)
{
Next[++cnt]=Laxt[u];
Laxt[u]=cnt;
To[cnt]=v;
}
void rebuild()
{
for(int i=;i<=n;i++){
for(int j=Laxt[i];j;j=Next[j]){
if(scc[i]!=scc[To[j]]){
G[scc[i]].push_back(scc[To[j]]);
}
}
}
}
void dfs(int u)
{
instk[u]=;
q[++head]=u;
dfn[u]=low[u]=++times;
for(int i=Laxt[u];i;i=Next[i]){
int v=To[i];
if(!dfn[v]) {
dfs(v);
low[u]=min(low[u],low[v]);
}
else if(instk[v])low[u]=min(low[u],dfn[v]);//无向图与有向图的区别
}
if(dfn[u]==low[u]){
scc_cnt++;
while(true){
int x=q[head--];
scc[x]=scc_cnt;
V[scc_cnt]+=w[x];
instk[x]=;
if(x==u) break;
}
}
}
void dfs2(int u,LL sum)
{
sum+=V[u];
Max=max(sum,Max);
for(int i=;i<G[u].size();i++){
dfs2(G[u][i],sum);
}
}
int main()
{
int m,i,u,v;
scanf("%d%d",&n,&m);
for(i=;i<=n;i++) scanf("%d",&w[i]);
for(i=;i<=m;i++){
scanf("%d%d",&u,&v);
add(u,v);
}
dfs();
rebuild();
dfs2(scc[],);
printf("%lld\n",Max);
return ;
}

HihoCoder 1185 : 连通性·三(强连通缩点)的更多相关文章

  1. hihoCoder 1185 连通性·三(Tarjan缩点+暴力DFS)

    #1185 : 连通性·三 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 暑假到了!!小Hi和小Ho为了体验生活,来到了住在大草原的约翰家.今天一大早,约翰因为有事要出 ...

  2. hihoCoder #1185 : 连通性·三(强联通分量+拓扑排序)

    #1185 : 连通性·三 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 暑假到了!!小Hi和小Ho为了体验生活,来到了住在大草原的约翰家.今天一大早,约翰因为有事要出 ...

  3. BZOJ1051 [HAOI2006]受欢迎的牛 Tarjan 强连通缩点

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1051 题意概括 有n只牛,有m个羡慕关系. 羡慕关系具有传递性. 如果A羡慕B,B羡慕C,那么我们 ...

  4. poj2553 强连通缩点

    The Bottom of a Graph Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 10114   Accepted: ...

  5. hdu 4635 Strongly connected 强连通缩点

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4635 题意:给你一个n个点m条边的图,问在图不是强连通图的情况下,最多可以向图中添多少条边,若图为原来 ...

  6. BZOJ 1051: [HAOI2006]受欢迎的牛 强连通缩点

    题目链接: http://www.lydsy.com/JudgeOnline/problem.php?id=1051 题解: 强连通缩点得到DAG图,将图转置一下,对入度为零的点跑dfs看看能不能访问 ...

  7. hdu 2767 Proving Equivalences 强连通缩点

    给出n个命题,m个推导,问最少添加多少条推导,能够使全部命题都能等价(两两都能互推) 既给出有向图,最少加多少边,使得原图变成强连通. 首先强连通缩点,对于新图,每一个点都至少要有一条出去的边和一条进 ...

  8. UVA - 11324 The Largest Clique 强连通缩点+记忆化dp

    题目要求一个最大的弱联通图. 首先对于原图进行强连通缩点,得到新图,这个新图呈链状,类似树结构. 对新图进行记忆化dp,求一条权值最长的链,每一个点的权值就是当前强连通分量点的个数. /* Tarja ...

  9. poj-1904(强连通缩点)

    题意:有n个王子,每个王子都有k个喜欢的女生,王子挑选喜欢的女生匹配,然后再给你n个王子最开始就定好的匹配,每个王子输出能够结合且不影响其他王子的女生匹配 解题思路:强连通缩点,每个王子与其喜欢的女生 ...

随机推荐

  1. $python打包工具pyinstaller的用法

    pyinstaller是一个很好用的python打包工具,在Windows环境下可以将python脚本打包成一个exe可执行文件,并且脚本中所依赖的各种第三方库在打包时候都会被统一处理到一起,这样打包 ...

  2. oracle 数据泵

      Oracle数据库导入导出工具,可以使用exp/imp,但这是比较早期的工具.本文主要介绍数据泵expdp/impdp工具的使用.   1.建立数据泵目录 使用数据泵需要先建directory c ...

  3. Sybase:存储过程中采用临时表存储统计数据

    Sybase:存储过程中采用临时表存储统计数据 作用 很有效的提升统计查询速度,对于数据量亿级.千万级多表之间关联查询,非常有效: 使用 --无需定义临时表,直接使用 --自动释放临时表 select ...

  4. VRChat简易教程3-往世界里导入模型和VRC接口初探

    一.准备工作 按前面的教程新建一个project,导入sdk并创建地面(Terrain)和VRCWorld. 本教程中我们学习如何导入别人做好的模型并使用VRC提供的接口来实现物品的抓取,模型素材(小 ...

  5. Eclipse使用Maven搭建Java Web项目并直接部署Tomcat

    1.环境: Windows 10 Java 1.8 Maven 3.3.9 Eclipse IDE for Java EE Developers 2.准备: eclipse环境什么的不赘述,Maven ...

  6. Boostnote:适合程序员的笔记软件【转】

    本文转载自:https://blog.csdn.net/u013553529/article/details/70306899 Boostnote:适合程序员的笔记软件 注意: Boostnote正在 ...

  7. The remote end hung up unexpectedly while git cloning

    https://stackoverflow.com/questions/6842687/the-remote-end-hung-up-unexpectedly-while-git-cloning Qu ...

  8. 金中半日baoling游-----stoi

    蒟蒻又来水博客了,写个游记啦啦啦啦,好像是第一篇游记咯. 温馨提示:愚人节写的博客看了后会变棒棒哦!(麻麻再也不用担心我被骗) 进入正题 3月31日早6:30左右起床了,然后就是....(此处可省略) ...

  9. “玲珑杯”ACM比赛 Round #13 B -- 我也不是B(二分排序)

    题意:开始有一个空序列s,一个变量c=0,接着从左往右依次将数组a中的数字放入s的尾部,每放一个数字就检测一次混乱度K,当混乱度k大于M时就清空序列并让c=c+1 K = Bi * Vi(1<= ...

  10. springBean获取的几种方法

    1.通过FileSystemApplicationContext来获取(不常用,因为要spring配置文件的绝对路径) 2.通过ClassPathXmlApplicationContext来获取(常用 ...