转载 fpga中 restoring 和 non-restoring 除法实现。
对于non-restoring方法,主要是用rem和den移位数据比较,rem_d长度为den+nom的总长,den_d长度为den+nom的总长度,rem_d的初始值为{{d_width{1'b0}},nom};den_d的初始值为{1'b0,den,{(n_width-1){1'b0}}}。每次比较,移位同时进行。
除法运算也是数字信号处理中经常需要使用的。在FPGA设计中,通常为了简化算法,通常将除法近似为对数据进行移位操作即除数是2的整数次幂,因为在FPGA中进行移位很容易,比如右移2位相当于除4;但是在某些特殊情况下,为了满足数据处理的指标要求,不得不进行非2的整数次幂除法运算,此时就需要设计除法器。
对于被除数Nom,除数Den,除法可产生商Quo和余数Rem,计算式如下:
直接用上式在FPGA中实现,好像不是那么容易,对上式做一变换得到Rem=Nom-Den*Quo,这样就有些灵感了,被除数Nom和除数Den是给定的,可以通过比对Nom和Den*Quo值大小来调节商Quo的值,因为FPGA中数值都是以二进制表示的,因此按位来调节Quo的值,Den*Quo的乘法操作可用移位实现,因此可以完全使用逻辑实现整个除法器。
本文介绍两种常用除法器结构:Restoring除法器和NonRestoring除法器
NonRestoring除法器:
Verilog HDL代码如下:
//nonrestoring division
module div_uu(clk,rst,clk_en,nom,den,quo,rem);
parameter integer n_width=32;
parameter integer d_width=16;
parameter integer q_width=n_width;
parameter integer r_width=d_width;
input clk;
input rst;
input clk_en;
input [n_width-1:0] nom;
input [d_width-1:0] den;
output reg [q_width-1:0] quo;
output reg [r_width-1:0] rem;
reg [n_width+d_width-1 : 0] den_d[q_width : 1];
reg [q_width-1 : 0] quo_d[q_width : 1];
reg [n_width+d_width-1 : 0] rem_d[q_width : 1];
reg clk_en_d[q_width : 1];
always@(posedge clk)
if(rst) begin
rem_d[1]<={(n_width+d_width){1'b0}};
den_d[1]<={(n_width+d_width){1'b0}};
quo_d[1]<={q_width{1'b0}};
clk_en_d[1]<=1'b0;
end
else
if(clk_en) begin
rem_d[1]<={{d_width{1'b0}},nom};
den_d[1]<={1'b0,den,{(n_width-1){1'b0}}};
quo_d[1]<={q_width{1'b0}};
clk_en_d[1]<=1'b1;
end
else begin
rem_d[1]<={(n_width+d_width){1'b0}};
den_d[1]<={(n_width+d_width){1'b0}};
quo_d[1]<={q_width{1'b0}};
clk_en_d[1]<=1'b0;
end
generate
genvar i;
for(i=2;i<=q_width;i=i+1)
begin:U
always@(posedge clk)
if(rst) begin
rem_d[i]<={(n_width+d_width){1'b0}};
den_d[i]<={(n_width+d_width){1'b0}};
quo_d[i]<={q_width{1'b0}};
clk_en_d[i]<=1'b0;
end
else
if(clk_en_d[i-1]) begin
if(rem_d[i-1] >= den_d[i-1]) begin
rem_d[i]<=rem_d[i-1] - den_d[i-1];
den_d[i]<=den_d[i-1]>>1;
quo_d[i]<={quo_d[i-1][q_width-2:0],1'b1};
end
else begin
rem_d[i]<=rem_d[i-1];
den_d[i]<=den_d[i-1]>>1;
quo_d[i]<={quo_d[i-1][q_width-2:0],1'b0};
end
clk_en_d[i]<=1'b1;
end
else begin
rem_d[i]<={(n_width+d_width){1'b0}};
den_d[i]<={(n_width+d_width){1'b0}};
quo_d[i]<={q_width{1'b0}};
clk_en_d[i]<=1'b0;
end
end
endgenerate
always@(posedge clk)
if(rst) begin
rem<={d_width{1'b0}};
quo<={q_width{1'b0}};
end
else
if(clk_en_d[q_width]) begin
if((rem_d[q_width] >= den_d[q_width])) begin
rem<=rem_d[q_width] - den_d[q_width];
quo<={quo_d[q_width][q_width-2:0],1'b1};
end
else begin
rem<=rem_d[q_width];
quo<={quo_d[q_width][q_width-2:0],1'b0};
end
end
else begin
rem<={d_width{1'b0}};
quo<={q_width{1'b0}};
end
endmodule
上述代码实现了32位除16位无符号除法操作,综合得到结果如下:
Number of Slice Registers: 2112
Number of Slice LUTs: 1565
Minimum period: 2.070ns (Maximum Frequency: 483.139MHz)
仿真结果如图1所示
图1
Restoring除法器:
Verilog HDL代码如下(贴出了核心部分代码,其它部分代码与NonRestoring相同):
//restoring division
reg [n_width+d_width-1 : 0] den_d[2*q_width-1 : 1];
reg [q_width-1 : 0] quo_d[2*q_width-1 : 1];
reg signed [n_width+d_width-1 : 0] rem_d[2*q_width-1 : 1];
reg clk_en_d[2*q_width-1:1];
always@(posedge clk)
if(rst) begin
rem_d[1]<={(n_width+d_width){1'b0}};
den_d[1]<={(n_width+d_width){1'b0}};
quo_d[1]<={q_width{1'b0}};
clk_en_d[1]<=1'b0;
end
else
if(clk_en) begin
rem_d[1]<={{d_width{1'b0}},nom} - {1'b0,den,{(n_width-1){1'b0}}};
den_d[1]<={1'b0,den,{(n_width-1){1'b0}}};
quo_d[1]<={q_width{1'b0}};
clk_en_d[1]<=1'b1;
end
else begin
rem_d[1]<={(n_width+d_width){1'b0}};
den_d[1]<={(n_width+d_width){1'b0}};
quo_d[1]<={q_width{1'b0}};
clk_en_d[1]<=1'b0;
end
generate
genvar i;
for(i=1;i<q_width;i=i+1)< em="">
begin:U0
always@(posedge clk)
if(rst) begin
rem_d[2*i]<={(n_width+d_width){1'b0}};
den_d[2*i]<={(n_width+d_width){1'b0}};
quo_d[2*i]<={q_width{1'b0}};
clk_en_d[2*i]<=1'b0;
end
else
if(clk_en_d[2*i-1]) begin
if(rem_d[2*i-1]<0) begin
rem_d[2*i]<=rem_d[2*i-1] + den_d[2*i-1];
quo_d[2*i]<={quo_d[2*i-1][q_width-2:0],1'b0};
end
else begin
rem_d[2*i]<=rem_d[2*i-1];
quo_d[2*i]<={quo_d[2*i-1][q_width-2:0],1'b1};
end
den_d[2*i]<=den_d[2*i-1]>>1;
clk_en_d[2*i]<=1'b1;
end
else begin
rem_d[2*i]<={(n_width+d_width){1'b0}};
den_d[2*i]<={(n_width+d_width){1'b0}};
quo_d[2*i]<={q_width{1'b0}};
clk_en_d[2*i]<=1'b0;
end
always@(posedge clk)
if(rst) begin
rem_d[2*i+1]<={(n_width+d_width){1'b0}};
den_d[2*i+1]<={(n_width+d_width){1'b0}};
quo_d[2*i+1]<={q_width{1'b0}};
clk_en_d[2*i+1]<=1'b0;
end
else
if(clk_en_d[2*i]) begin
rem_d[2*i+1]<=rem_d[2*i] - den_d[2*i];
den_d[2*i+1]<=den_d[2*i];
quo_d[2*i+1]<=quo_d[2*i];
clk_en_d[2*i+1]<=1'b1;
end
else begin
rem_d[2*i+1]<={(n_width+d_width){1'b0}};
den_d[2*i+1]<={(n_width+d_width){1'b0}};
quo_d[2*i+1]<={q_width{1'b0}};
clk_en_d[2*i+1]<=1'b0;
end
end
endgenerate
always@(posedge clk)
if(rst) begin
rem<={n_width{1'b0}};
quo<={q_width{1'b0}};
end
else
if(clk_en_d[2*q_width-1]) begin
if(rem_d[2*q_width-1]<0 ) begin
rem<=rem_d[2*q_width-1] + den_d[2*q_width-1];
quo<={quo_d[2*q_width-1][q_width-2:0],1'b0};
end
else begin
rem<=rem_d[2*q_width-1][n_width-1:0];
quo<={quo_d[2*q_width-1][q_width-2:0],1'b1};
end
end
else begin
rem<={d_width{1'b0}};
quo<={q_width{1'b0}};
end
上述代码实现了32位除16位无符号除法操作,综合得到结果如下:
Number of Slice Registers: 3875
Number of Slice LUTs: 2974
Minimum period: 1.794ns (Maximum Frequency: 557.414MHz)
仿真结果如图2所示,
图2
两种结构的乘法器有所区别,通过比较可发现,NonRestoring除法器没有“Rem=Nom-Den*Quo”的操作,而是直接比较Nom和Den*Quo的值,加上移位操作都在一个时钟周期内完成;而Restoring除法器将“Rem=Nom-Den*Quo”的结果寄存,并且在下一个时钟周期进行移位操作。因此,NonRestoring除法器Fmax较高, Restoring除法器相对节省资源,在应用时可根据实际需求决定采用哪一种结构的除法器。
转载 fpga中 restoring 和 non-restoring 除法实现。的更多相关文章
- FPGA中的除法运算及初识AXI总线
FPGA中的硬件逻辑与软件程序的区别,相信大家在做除法运算时会有深入体会.硬件逻辑实现的除法运算会占用较多的资源,电路结构复杂,且通常无法在一个时钟周期内完成.因此FPGA实现除法运算并不是一个&qu ...
- 【转载】FPGA 中的latch 锁存器
以下这篇文章讲述了锁存器的一些概念和注意事项.原文标题及链接: FPGA 中的latch 锁存器 - 快乐至永远上的博客 - 与非博客 - 与网 http://www.eefocus.com/liuy ...
- FPGA中浮点运算实现方法——定标
有些FPGA中是不能直接对浮点数进行操作的,仅仅能採用定点数进行数值运算.对于FPGA而言,參与数学运算的书就是16位的整型数,但假设数学运算中出现小数怎么办呢?要知道,FPGA对小数是无能为力的,一 ...
- 在FPGA中使用for循环一定浪费资源吗?
渐渐地,发现自己已经习惯于发现细节,喜欢打破常规,真的非常喜欢这种feel. 相信很多人在书上或者博文上都有提出“在FPGA中使用for语句是很占用资源的”的观点,特权同学也不例外.那么,这种观点正确 ...
- FPGA中RAM使用探索
FPGA中RAM的使用探索.以4bitX4为例,数据位宽为4为,深度为4. 第一种方式,直接调用4bitX4的RAM.编写控制逻辑对齐进行读写. quartus ii 下的编译,资源消耗情况. 85C ...
- FPGA中计数器设计探索
FPGA中计数器设计探索,以计数器为32位为例: 第一种方式,直接定义32位计数器. reg [31:0]count; quartus ii 下的编译,资源消耗情况. 85C模型下的时钟频率. 0C模 ...
- 低成本FPGA中实现动态相位调整
在FPGA中,动态相位调整(DPA)主要是实现LVDS接口接收时对时钟和数据通道的相位补偿,以达到正确接收的目的.ALTERA的高端FPGA,如STRATIX(r) 系列中自带有DPA电路,但低端的F ...
- FPGA中的“门”
逻辑门 在ASIC的世界里,衡量器件容量的常用标准是等效门.这是因为不同的厂商在单元库里提供了不同的功能模块,而每个功能模块的实现都要求不同数量的晶体管.这样在两个器件之间比较容量和复杂度就很困难. ...
- FPGA中的delay与latency
delay和latency都有延迟的意义,在FPGA中二者又有具体的区别. latency出现在时序逻辑电路中,表示数据从输入到输出有效经过的时间,通常以时钟周期为单位. delay出现在组合逻辑电路 ...
随机推荐
- jQuery上下切换带缩略图的焦点图
在线演示 本地下载
- 二叉树、平衡二叉树、B-Tree与B+Tree
本文总结自:https://blog.csdn.net/chuixue24/article/details/80027689 二叉树(B树,binary tree) 左子树的键值 < 根的键值 ...
- golang解析json报错:invalid character '\x00' after top-level value
golang解析json报错:invalid character '\x00' after top-level value 手动复制字符串:{"files":["c:/t ...
- Centos/ubuntu配置SVN服务
Centos安装svn yum -y install subversion ubuntu安装svn apt-get install subversion Centos配置svn root@hello: ...
- SpringBoot 事务隔离性和传播性
propergation 传播性 Spring中七种Propagation类的事务属性详解: REQUIRED:支持当前事务,如果当前没有事务,就新建一个事务.这是最常见的选择. SUPPORTS ...
- Spring Boot 中配置切换
步骤一:切换需求 有时候在本地测试是使用8080端口(默认端口),可是上线时使用的比如是9090端口(不常用的,以防被黑). 此时就可以通过多配置文件实现多配置支持与灵活切换. 步骤二:多配置文件 3 ...
- windchill系统——导航器v1.0:思维导图
总图 思维导图图片链接 http://www.edrawsoft.cn/viewer/public/s/7b3fc783493788
- 线段树 - HDU1166 - 敌兵布阵
2017-07-29 16:41:00 writer:pprp 线段树跟区间操作相关,想要在题目限定的时间内解决问题就需要用线段树这种数据结构来解决: 线段树是一种二叉平衡树 参考书目:张新华的< ...
- MyEclipse中删除对Struts、Hibernate、Spring .
已经导入一下框架,现在发现不想用了,要删除,发现麻烦,添加容易删除不易,下面这个帮你解决删除问题,本文为转载,我试过hibenate,挺好使,你们验证其他的框架 http://blog.csdn.ne ...
- Remove Duplicates from Sorted List ,除去链表中相邻的重复元素
Remove Duplicates from Sorted List : Given a sorted linked list, delete all duplicates such that eac ...