计算几何,暴力。

题目中有一句话:$The$ $mass$ $of$ $each$ $brick$ $is$ $equally$ $distributed$ $and$ $it$ $will$ $be$ $stable$ $if$ $it$ $is$ $placed$ $on$ $bases$ $or$ $stable$ $bricks$ $and$ $the$ $moment$ $of$ $it$ $can$ $be$ $zero$ $when$ $it$ $is$ $placed$.

核心原则:左右半段均有稳定的东西支撑,这条才算是稳定的。暴力扩展就可以了。需要用到判断线段不严格相交以及点到线段的最小距离。

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<ctime>
#include<iostream>
using namespace std;
typedef long long LL;
const double pi=acos(-1.0);
void File()
{
freopen("D:\\in.txt","r",stdin);
freopen("D:\\out.txt","w",stdout);
}
template <class T>
inline void read(T &x)
{
char c = getchar();
x = ;
while(!isdigit(c)) c = getchar();
while(isdigit(c))
{
x = x * + c - '';
c = getchar();
}
} const double eps=1e-;
#define zero(x)(((x)>0?(x):(-x))<eps) struct point
{
double x,y;
point(double X,double Y)
{
x=X;
y=Y;
}
}; double xmult(point p1,point p2,point p0)
{
return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y);
} int dots_inline(point p1,point p2,point p3)
{
return zero(xmult(p1,p2,p3));
} int same_side(point p1,point p2,point l1,point l2)
{
return xmult(l1,p1,l2)*xmult(l1,p2,l2)>eps;
} int dot_online_in(point p,point l1,point l2)
{
return zero(xmult(p,l1,l2))&&(l1.x-p.x)*(l2.x-p.x)<eps&&(l1.y-p.y)*(l2.y-p.y)<eps;
} int intersect_in(point u1,point u2,point v1,point v2)
{
if(!dots_inline(u1,u2,v1)||!dots_inline(u1,u2,v2)) return !same_side(u1,u2,v1,v2)&&!same_side(v1,v2,u1,u2);
return dot_online_in(u1,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(v1,u1,u2)||dot_online_in(v2,u1,u2);
} int T;
struct YUAN
{
double x,y,r;
} yuan[];
struct XIAN
{
double p1x,p1y,p2x,p2y;
} xian[];
int n,m; int f[]; double DIS(point a,point b)
{
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
} point intersection(point u1,point u2,point v1,point v2)
{
point ret=u1;
double t=((u1.x-v1.x)*(v1.y-v2.y)-(u1.y-v1.y)*(v1.x-v2.x))
/((u1.x-u2.x)*(v1.y-v2.y)-(u1.y-u2.y)*(v1.x-v2.x));
ret.x+=(u2.x-u1.x)*t;
ret.y+=(u2.y-u1.y)*t;
return ret;
} point ptoseg(point p,point l1,point l2)
{
point t=p;
t.x+=l1.y-l2.y,t.y+=l2.x-l1.x;
if(xmult(l1,t,p)*xmult(l2,t,p)>eps)
return DIS(p,l1)<DIS(p,l2)?l1:l2;
return intersection(p,t,l1,l2);
} int check(point A,point B,int b)
{
point F=ptoseg(point(yuan[b].x,yuan[b].y),A,B);
double dis=DIS(F,point(yuan[b].x,yuan[b].y));
if(dis<=yuan[b].r) return ;
return ;
} int main()
{
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
for(int i=; i<=n; i++) scanf("%lf%lf%lf",&yuan[i].x,&yuan[i].y,&yuan[i].r);
for(int i=; i<=m; i++) scanf("%lf%lf%lf%lf",&xian[i].p1x,&xian[i].p1y,&xian[i].p2x,&xian[i].p2y); memset(f,,sizeof f); int sum=;
while()
{
int Z=; for(int i=; i<=m; i++)
{
if(f[i]==) continue; point p1= point(xian[i].p1x,xian[i].p1y);
point p2= point(xian[i].p2x,xian[i].p2y);
point p3= point((p1.x+p2.x)/,(p1.y+p2.y)/); int f1=,f2=; for(int j=; j<=n; j++)
{
if(check(p1,p3,j)) f1=;
if(check(p2,p3,j)) f2=;
} for(int j=; j<=m; j++)
{
if(f[j]==) continue; if(intersect_in(p1,p3,point(xian[j].p1x,xian[j].p1y),point(xian[j].p2x,xian[j].p2y))) f1=;
if(intersect_in(p2,p3,point(xian[j].p1x,xian[j].p1y),point(xian[j].p2x,xian[j].p2y))) f2=;
} if(f1==&&f2==) f[i]=,Z++;
} if(Z==) break;
sum=sum+Z;
} if(sum!=m) printf("NO\n");
else printf("YES\n"); }
return ;
}

ZOJ 3495 Lego Bricks的更多相关文章

  1. (转)LSTM NEURAL NETWORK FOR TIME SERIES PREDICTION

    LSTM NEURAL NETWORK FOR TIME SERIES PREDICTION Wed 21st Dec 2016   Neural Networks these days are th ...

  2. New需谨慎

    New is Glue When you’re working in a strongly typed language like C# or Visual Basic, instantiating ...

  3. (zhuan) LSTM Neural Network for Time Series Prediction

    LSTM Neural Network for Time Series Prediction Wed 21st Dec 2016 Neural Networks these days are the ...

  4. Bookmarks_www2

    Bookmarks Bookmarks alexis- (Alex Incogito) - Repositories · GitHub GitHub - aetcnc-Arduino_DeltaHMI ...

  5. Bookmarks www

    Bookmarks alexis- (Alex Incogito) - Repositories · GitHub GitHub - aetcnc-Arduino_DeltaHMI_RS485 Ope ...

  6. 100 Most Influential Books According to Stack Overflow

    Please read this blog post to see why this is here. This data was created on 02/13/2012 20:00:00 All ...

  7. [C3] Andrew Ng - Neural Networks and Deep Learning

    About this Course If you want to break into cutting-edge AI, this course will help you do so. Deep l ...

  8. [C1] Andrew Ng - AI For Everyone

    About this Course AI is not only for engineers. If you want your organization to become better at us ...

  9. zoj 1251 Box of Bricks

    Box of Bricks Time Limit: 2 Seconds      Memory Limit: 65536 KB Little Bob likes playing with his bo ...

随机推荐

  1. Win7 安装配置 nexus3.7.1

    安装准备: nexus3.7.1 环境准备: maven.jdk 解压nexus目录结构为: E:\nexus-3.7.1-02 配置环境变量: 启动: nexus.exe /run

  2. java加载驱动

    加载驱动方法 1.Class.forName("com.microsoft.sqlserver.jdbc.SQLServerDriver"); 2. DriverManager.r ...

  3. npm 淘宝镜像安装以及安装报错window_nt 6.1.7601 解决

    http://www.cnblogs.com/ycxhandsome/p/6562980.html npm config set proxy null npm config set https-pro ...

  4. 51nod 1486 大大走格子——dp

    有一个h行w列的棋盘,里面有一些格子是不能走的,现在要求从左上角走到右下角的方案数. Input 单组测试数据. 第一行有三个整数h, w, n(1 ≤ h, w ≤ 10^5, 1 ≤ n ≤ 20 ...

  5. 【BZOJ】1710: [Usaco2007 Open]Cheappal 廉价回文

    [算法]区间DP [题解]回文问题的套路做法:区间DP. f[i][j]表示区间i~j回文的最小代价,则有f[i][j]=min{①②③}. ①f[i+1][j]+min(a[s[i]],b[s[i] ...

  6. POJ 2533 Longest Ordered Subsequence LIS O(n*log(n))

    题目链接 最长上升子序列O(n*log(n))的做法,只能用于求长度不能求序列. #include <iostream> #include <algorithm> using ...

  7. TensorFlow 模型保存和导入、加载

    在TensorFlow中,保存模型与加载模型所用到的是tf.train.Saver()这个类.我们一般的想法就是,保存模型之后,在另外的文件中重新将模型导入,我可以利用模型中的operation和va ...

  8. 项目记录 -- python调用回调函数

    C源文件: static int get_callback(zpool_handle_t *zhp, void *data) { zprop_get_cbdata_t *cbp = (zprop_ge ...

  9. java封装示例代码

    package com.imooc; public class Telphone { private float screen; private float cpu; private float me ...

  10. linux 服务简介

    Linux服务(Linux services)对于每个应用Linux的用户来说都很重要.关闭不需要的服务,可以让Linux运行的更高效,但并不是所有的Linux服务都可以关闭.今天安装了一次CentO ...