[BZOJ2337][HNOI2011]XOR和路径(概率+高斯消元)
直接不容易算,考虑拆成位处理。
设f[i]表示i到n的期望路径异或和(仅考虑某一位),则$f[y]=\sum\limits_{exist\ x1\to y=0}\frac{f[x1]}{d[x1]}+\sum\limits_{exist\ x2\to y=1}\frac{1-f[x2]}{d[x2]}$。
对于重边,直接在系数上+1即可。对于自环,只计算一次度数即可。
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define rep(i,l,r) for (int i=l; i<=r; i++)
typedef long long ll;
using namespace std; const int N=,M=;
int n,m,d[N];
double ans,a[N][N];
struct E{ int x,y,w; }e[M];
double Abs(double x){ return (x<) ? -x : x; } double cal(int S){
memset(a,,sizeof(a));
rep(i,,m){
if (e[i].w&S){
a[e[i].x][e[i].y]+=; a[e[i].x][n+]+=;
if (e[i].x!=e[i].y) a[e[i].y][e[i].x]+=,a[e[i].y][n+]+=;
}else{
a[e[i].x][e[i].y]-=;
if (e[i].x!=e[i].y) a[e[i].y][e[i].x]-=;
}
}
rep(i,,n+) a[n][i]=;
rep(i,,n) a[i][i]+=d[i];
rep(i,,n){
int k=i;
rep(j,i+,n) if (Abs(a[j][i])>Abs(a[k][i])) k=j;
rep(j,i,n+) swap(a[k][j],a[i][j]);
rep(j,i+,n){
double t=a[j][i]/a[i][i];
rep(k,i,n+) a[j][k]-=a[i][k]*t;
}
}
for (int i=n; i; i--){
rep(j,i+,n) a[i][n+]-=a[i][j]*a[j][n+];
a[i][n+]/=a[i][i];
}
return a[][n+];
} int main(){
freopen("bzoj2337.in","r",stdin);
freopen("bzoj2337.out","w",stdout);
scanf("%d%d",&n,&m);
rep(i,,m){
scanf("%d%d%d",&e[i].x,&e[i].y,&e[i].w); d[e[i].x]++;
if (e[i].y!=e[i].x) d[e[i].y]++;
}
for (int i=<<; i; i>>=) ans+=cal(i)*i;
printf("%.3lf\n",ans);
return ;
}
[BZOJ2337][HNOI2011]XOR和路径(概率+高斯消元)的更多相关文章
- BZOJ2337: [HNOI2011]XOR和路径(期望 高斯消元)
题意 题目链接 Sol 期望的线性性对xor运算是不成立的,但是我们可以每位分开算 设\(f[i]\)表示从\(i\)到\(n\)边权为1的概率,统计答案的时候乘一下权值 转移方程为 \[f[i] = ...
- 【BZOJ2337】Xor和路径(高斯消元)
[BZOJ2337]Xor和路径(高斯消元) 题面 BZOJ 题解 我应该多学点套路: 对于xor之类的位运算,要想到每一位拆开算贡献 所以,对于每一位拆开来看 好了,既然是按位来算 我们就只需要计算 ...
- 【BZOJ】2337: [HNOI2011]XOR和路径 期望+高斯消元
[题意]给定n个点m条边的带边权无向连通图(有重边和自环),在每个点随机向周围走一步,求1到n的期望路径异或值.n<=100,wi<=10^9. [算法]期望+高斯消元 [题解]首先异或不 ...
- bzoj 2337 [HNOI2011]XOR和路径【高斯消元+dp】
首先,我们发现,因为是无向图,所以相连的点之间是有"依赖性"的,所以不能直接用dp求解. 因为是xor,所以按位处理,于是列线性方程组,设$ x[i] $为点i到n异或和为1的期望 ...
- P3211-[HNOI2011]XOR和路径【高斯消元】
正题 题目链接:https://www.luogu.com.cn/problem/P3211 题目大意 一个\(n\)个点\(m\)条边的无向图,从\(1\)到\(n\)随机游走.求期望路径异或和. ...
- BZOJ 2337 XOR和路径(高斯消元)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2337 题意:给定一个带权无向图.从1号点走到n号点.每次从当前点随机(等概率)选择一条相 ...
- BZOJ2337 [HNOI2011]XOR和路径 【概率dp + 高斯消元】
题目 题解 突然get到这样路径期望的题目八成是高斯消元 因为路径上的dp往往具有后效性,这就形成了一个方程组 对于本题来说,直接对权值dp很难找到突破口 但是由于异或是位独立的,我们考虑求出每一位的 ...
- [HNOI2011]XOR和路径 概率期望 高斯消元
题面 题解:因为异或不太好处理,,,因此按位来算,这样最后的答案就是每一位上的值乘对应的权值再求和.本着期望要倒退的原则,,,我们设$f[i]$表示从$i$到$n$,xor和为1的概率.那么观察$xo ...
- BZOJ2337: [HNOI2011]XOR和路径
题解: 异或操作是每一位独立的,所以我们可以考虑每一位分开做. 假设当前正在处理第k位 那令f[i]表示从i到n 为1的概率.因为不是有向无环图(绿豆蛙的归宿),所以我们要用到高斯消元. 若有边i-& ...
随机推荐
- 洛谷P3764 签到题 III
题目背景 pj组选手zzq近日学会了求最大公约数的辗转相除法. 题目描述 类比辗转相除法,zzq定义了一个奇怪的函数: typedef long long ll; ll f(ll a,ll b) { ...
- javascript 事件知识集锦
1.事件委托极其应用 转载的链接: http://www.webhek.com/event-delegate/#comments 2. 解析javascript事件机制 转载链接: http: ...
- 【HNOI】矩阵染色 数论
[题目描述]一个2*i的矩阵,一共有m种颜色,相邻两个格子颜色不能相同,m种颜色不必都用上,f[i]表示这个答案,求Σf[i]*(2*i)^m (1<=i<=n)%p. [数据范围] 20 ...
- vue手势解决方案
1.需求 因为项目中要做一个可以移动.旋转和放缩具有合成图片的功能,例如: 剑可以随意移动,然后把位移.旋转角度和放缩值传给后台进行合成. 2.解决方案 网上搜到手势插件AlloyFinger,htt ...
- sublime3 快捷键大全
Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格 ...
- 八大疯狂的HTML5 Canvas及WebGL动画效果——8 CRAZY ANIMATIONS WITH WEBGL AND HTML5 CANVAS【收藏】
HTML5, WebGL and Javascript have changed the way animation used to be. Past few years, we can only a ...
- 时间盲注脚本.py
时间盲注脚本 #!/usr/bin/env python # -*- coding: utf-8 -*- import requests import time payloads = 'abcdefg ...
- Open Compute Project
Open Compute Project https://github.com/opencomputeproject https://github.com/floodlight/floodlight ...
- linux 系统调用fork()
头文件: #include<unistd.h> #include<sys/types.h> 函数原型: pid_t fork( void); (pid_t 是一个宏定义,其实质 ...
- redis之(十四)redis的主从复制的原理
一:redis主从复制的原理,步骤. 第一步:复制初始化 --->从redis启动后,会根据配置,向主redis发送SYNC命令.2.8版本以后,发送PSYNC命令. --->主red ...