【BZOJ 1115】【POI 2009】石子游戏Kam
http://www.lydsy.com/JudgeOnline/problem.php?id=1115
差分后变成阶梯博弈。
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 1003;
int a[N], n, s;
int main() {
int T; scanf("%d", &T);
while (T--) {
scanf("%d", &n);
for (int i = 1; i <= n; ++i) scanf("%d", a + i);
s = 0;
for (int i = n; i >= 1; i -= 2) s ^= a[i] - a[i - 1];
puts(s ? "TAK" : "NIE");
}
return 0;
}
【BZOJ 1115】【POI 2009】石子游戏Kam的更多相关文章
- BZOJ 1115: [POI2009]石子游戏Kam
1115: [POI2009]石子游戏Kam Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 883 Solved: 545[Submit][Stat ...
- 【BZOJ】【1115】【POI2009】石子游戏KAM
博弈论 这个题……一看就觉得很捉急啊= =肿么办? 灵光一现:差分一下~ 那么我们看一下差分以后,从第 i 堆中拿走 k 个石子变成了:a[i]-=k; a[i+1]+=k; 嗯这就转化成了阶梯博弈! ...
- bzoj 1115: [POI2009]石子游戏Kam -- 博弈论
1115: [POI2009]石子游戏Kam Time Limit: 10 Sec Memory Limit: 162 MB Description 有N堆石子,除了第一堆外,每堆石子个数都不少于前 ...
- 【BZOJ1115】[POI2009]石子游戏Kam 阶梯博弈
[BZOJ1115][POI2009]石子游戏Kam Description 有N堆石子,除了第一堆外,每堆石子个数都不少于前一堆的石子个数.两人轮流操作每次操作可以从一堆石子中移走任意多石子,但是要 ...
- [BZOJ 1115] [POI2009] 石子游戏Kam 【阶梯博弈】
题目链接:BZOJ - 1115 题目分析 首先看一下阶梯博弈: 阶梯博弈是指:初始有 n 堆石子,每次可以从任意的第 i 堆拿若干石子放到第 i - 1 堆.最终不能操作的人失败. 解法:将奇数位的 ...
- vijos 1557:bzoj:1413: [ZJOI2009]取石子游戏
Description 在研究过Nim游戏及各种变种之后,Orez又发现了一种全新的取石子游戏,这个游戏是这样的: 有n堆石子,将这n堆石子摆成一排.游戏由两个人进行,两人轮流操作,每次操作者都可以从 ...
- 【刷题】BZOJ 1413 [ZJOI2009]取石子游戏
Description 在研究过Nim游戏及各种变种之后,Orez又发现了一种全新的取石子游戏,这个游戏是这样的: 有n堆石子,将这n堆石子摆成一排.游戏由两个人进行,两人轮流操作,每次操作者都可以从 ...
- [BZOJ1115][POI2009]石子游戏Kam解题报告|阶梯博弈
有N堆石子,除了第一堆外,每堆石子个数都不少于前一堆的石子个数.两人轮流操作每次操作可以从一堆石子中移走任意多石子,但是要保证操作后仍然满足初始时的条件谁没有石子可移时输掉游戏.问先手是否必胜. 首先 ...
- bzoj 1413 [ZJOI2009]取石子游戏
1413: [ZJOI2009]取石子游戏 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 747 Solved: 490[Submit][Statu ...
随机推荐
- 【Python项目】使用Face++的人脸识别detect API进行本地图片情绪识别并存入excel
准备工作 首先,需要在Face++的主页注册一个账号,在控制台去获取API Key和API Secret. 然后在本地文件夹准备好要进行情绪识别的图片/相片. 代码 介绍下所使用的第三方库 ——url ...
- Caffe学习笔记2
Caffe学习笔记2-用一个预训练模型提取特征 本文为原创作品,未经本人同意,禁止转载,禁止用于商业用途!本人对博客使用拥有最终解释权 欢迎关注我的博客:http://blog.csdn.net/hi ...
- Low overhead memory space management
Methods, apparatus, and systems, including computer programs encoded on a computer storage medium, m ...
- kernel defconfig
Some defconfig files are placed on below path. Only one *_defconfig can be selected. android/kernel/ ...
- MongoDB的win安装教程
写在前面的 Mongo DB 是目前在IT行业非常流行的一种非关系型数据库(NoSql),其灵活的数据存储方式备受当前IT从业人员的青睐.Mongo DB很好的实现了面向对象的思想(OO思想),在Mo ...
- C++中delete和delete[]的区别(转)
原文链接:http://www.cnblogs.com/charley_yang/archive/2010/12/08/1899982.html 一直对C++中的delete和delete[]的区别不 ...
- Django基础之forms组件中的ModelForm组件
Django的model form组件 这是一个神奇的组件,通过名字我们可以看出来,这个组件的功能就是把model和form组合起来,先来一个简单的例子来看一下这个东西怎么用:比如我们的数据库中有这样 ...
- Majority Element——算法课上的一道题(经典)
Given an array of size n, find the majority element. The majority element is the element that appear ...
- python 函数的几个属性 func_name, func_code等
直接见代码: #!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2018/07/25 10:14 def add(x=0, y=1): & ...
- 走进 Prism for Xamarin.Forms
一.使用环境 OS:Win 10 16273 VS:VS2017- 15.3.4 Xamarin:4.6.3.4,nuget:2.4 Android Emulator:Visual Studio fo ...