Bzoj2818 Gcd(莫比乌斯反演)
题面
题意都在题目里面了
题解
你可以把题意看成这个东西
$$ \sum_{i=1}^n\sum_{j=1}^m\mathbf f(gcd(i,j)) $$
其中$\mathbf f(n)$为$是否是一个质数[n是否是一个质数]$
然后把$\mathbf f$反演一下,找到一个$\mathbf g$令$\mathbf f=\mathbf 1 \ast \mathbf g$,即:
$$ \mathbf g(n)=\sum_{d\mid n}\mu(\frac nd)\cdot \mathbf f(d)=\sum_{d\mid n, d \in prime}\mu (\frac nd) $$
所以$\mathbf g$可以这样求:
for(int j = 1; j <= cnt; ++j)
for(int i = 1; i * prime[j] <= n; ++i)
g[i * prime[j]] += mu[i];
就是枚举系数。
接着考虑怎么做:
由于$gcd$有一个很好的性质:
$d\mid gcd(i,j) \Leftrightarrow d\mid i, d\mid j$
所以
$$ \sum_{i=1}^n\sum_{j=1}^n\sum_{d\mid i,d\mid j}\mathbf g(d) \\ =\sum_{d=1}^{min(n,m)}\mathbf g(d)\sum_{i=1}^n\sum_{j=1}^m[d\mid i][d\mid j] \\ =\sum_{d=1}^{min(n,m)}\mathbf g(d) \lfloor\frac nd \rfloor\lfloor\frac md\rfloor $$
然后就可以整除分块了!!
#include <cstdio>
#include <cstring>
#include <algorithm>
using std::min; using std::max;
using std::swap; using std::sort;
typedef long long ll;
template<typename T>
void read(T &x) {
int flag = 1; x = 0; char ch = getchar();
while(ch < '0' || ch > '9') { if(ch == '-') flag = -flag; ch = getchar(); }
while(ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); x *= flag;
}
const int N = 1e7 + 10;
int t, n, m, mu[N], g[N], prime[N], cnt;
long long sum[N], ans; bool notprime[N];
void getmu(int k) {
mu[1] = 1;
for(int i = 2; i <= k; ++i) {
if(!notprime[i]) prime[++cnt] = i, mu[i] = -1;
for(int j = 1; j <= cnt && prime[j] * i <= k; ++j) {
notprime[prime[j] * i] = true;
if(!(i % prime[j])) break;
mu[prime[j] * i] = -mu[i];
}
}
for(int j = 1; j <= cnt; ++j)
for(int i = 1; i * prime[j] <= k; ++i)
g[i * prime[j]] += mu[i];
for(int i = 1; i <= k; ++i)
sum[i] = sum[i - 1] + 1ll * g[i];
}
int main () {
read(n), getmu(n);
for(int l = 1, r; l <= n; l = r + 1) {
r = n / (n / l);
ans += (sum[r] - sum[l - 1]) * (n / l) * (n / l);
} printf("%lld\n", ans);
return 0;
}
Bzoj2818 Gcd(莫比乌斯反演)的更多相关文章
- BZOJ2818: Gcd 莫比乌斯反演
分析:筛素数,然后枚举,莫比乌斯反演,然后关键就是分块加速(分块加速在上一篇文章) #include<cstdio> #include<cstring> #include< ...
- [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)
[BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...
- 【BZOJ2818】Gcd [莫比乌斯反演]
Gcd Time Limit: 10 Sec Memory Limit: 256 MB[Submit][Status][Discuss] Description 给定整数N,求1<=x,y&l ...
- HDU1695 GCD(莫比乌斯反演)
传送门 看了1个多小时,终于懂了一点了 题目大意:给n,m,k.求gcd(x,y) = k(1<=x<=n, 1<=y<=m)的个数 思路:令F(i)表示i|gcd(x,y)的 ...
- hdu 1695 GCD 莫比乌斯反演入门
GCD 题意:输入5个数a,b,c,d,k;(a = c = 1, 0 < b,d,k <= 100000);问有多少对a <= p <= b, c <= q <= ...
- 洛谷P2257 YY的GCD 莫比乌斯反演
原题链接 差不多算自己推出来的第一道题QwQ 题目大意 \(T\)组询问,每次问你\(1\leqslant x\leqslant N\),\(1\leqslant y\leqslant M\)中有多少 ...
- HYSBZ - 2818 Gcd (莫比乌斯反演)
莫比乌斯反演的入门题,设 \(F(x): gcd(i,j)\%x=0\) 的对数,\(f(x): gcd(i,j)=x\)的对数. 易知\[F(p) = \lfloor \frac{n}{p} \rf ...
- Luogu P2257 YY的GCD 莫比乌斯反演
第一道莫比乌斯反演...$qwq$ 设$f(d)=\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)==d]$ $F(n)=\sum_{n|d}f(d)=\lfloor \frac{N ...
- BZOJ 2818 Gcd (莫比乌斯反演 或 欧拉函数)
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MB Submit: 2534 Solved: 1129 [Submit][Status][Discu ...
- BZOJ 2820 luogu 2257 yy的gcd (莫比乌斯反演)
题目大意:求$gcd(i,j)==k,i\in[1,n],j\in[1,m] ,k\in prime,n,m<=10^{7}$的有序数对个数,不超过10^{4}次询问 莫比乌斯反演入门题 为方便 ...
随机推荐
- UVA 1649 Binomial coefficients
https://vjudge.net/problem/UVA-1649 题意: 输入m,求所有的C(n,k)=m m<=1e15 如果枚举n,那么C(n,k)先递增后递减 如果枚举k,那么C(n ...
- 【Foreign】Uria [欧拉函数]
Uria Time Limit: 20 Sec Memory Limit: 512 MB Description 从前有个正整数 n. 对于一个正整数对 (a,b),如果满足 a + b ≤ n 且 ...
- 【BZOJ5010】【FJOI2017】矩阵填数 [状压DP]
矩阵填数 Time Limit: 10 Sec Memory Limit: 128 MB[Submit][Status][Discuss] Description 给定一个 h*w 的矩阵,矩阵的行 ...
- 【LibreOJ】#538. 「LibreOJ NOIP Round #1」数列递推
[题意]LibreOJ [算法]乱搞 [题解]容易发现数列最后一定单调,最后单调递增则最大值赋为最后一个,反之最小值赋为最后一个,然后处理一些细节就可以AC,要注意以下几点: 1.数列连续三项以及数列 ...
- chrome最小字体12px如何修改
在html标记样式里加入 <style> html { -webkit-text-size-adjust:none } </style> 这样的方式可以设置chrome字体小于 ...
- bzoj 1179 tarjan+spfa
首先我们可以将这个图缩成DAG,那么问题中的路线就可以简化为DAG中的一条链,那么我们直接做一遍spfa就好了. 反思:开始写的bfs,结果bfs的时候没有更新最大值,而是直接赋的值,后来发现不能写b ...
- Maven学习笔记(一)
我们暂且可以把Maven理解成是一个项目构建与依赖管理的工具 为什么选用maven? 约定(惯例)优先原则,默认限定了项目目录结构 提供三方依赖管理(解决了依赖维护的问题) 提供了一致的项目构建管 ...
- hdu 1879 继续畅通工程 (并查集+最小生成树)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1879 继续畅通工程 Time Limit: 2000/1000 MS (Java/Others) ...
- MySQL 8.0 正式版 8.0.11 发布:比 MySQL 5.7 快 2 倍
ySQL 8.0 正式版 8.0.11 已发布,官方表示 MySQL 8 要比 MySQL 5.7 快 2 倍,还带来了大量的改进和更快的性能! 注意:从 MySQL 5.7 升级到 MySQL 8. ...
- 9.quartus_warning_altera_reserved_tck
编译的时候没有注意,整个工程都可以在板子上跑起来.但是做Powerplay的时候,出现了这个Critical Warning:. Critical Warning: The following clo ...