Sum of Different Primes
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 3360   Accepted: 2092

Description

A positive integer may be expressed as a sum of different prime numbers (primes), in one way or another. Given two positive integers n and k, you should count the number of ways to express n as a sum of k different primes. Here, two ways are considered to be the same if they sum up the same set of the primes. For example, 8 can be expressed as 3 + 5 and 5 + 3 but the are not distinguished.

When n and k are 24 and 3 respectively, the answer is two because there are two sets {2, 3, 19} and {2, 5, 17} whose sums are equal to 24. There are not other sets of three primes that sum up to 24. For n = 24 and k = 2, the answer is three, because there are three sets {5, 19}, {7, 17} and {11, 13}. For n = 2 and k = 1, the answer is one, because there is only one set {2} whose sum is 2. For n = 1 and k = 1, the answer is zero. As 1 is not a prime, you shouldn’t count {1}. For n = 4 and k = 2, the answer is zero, because there are no sets of two different primes whose sums are 4.

Your job is to write a program that reports the number of such ways for the given n and k.

Input

The input is a sequence of datasets followed by a line containing two zeros separated by a space. A dataset is a line containing two positive integers n and k separated by a space. You may assume that n ≤ 1120 and k ≤ 14.

Output

The output should be composed of lines, each corresponding to an input dataset. An output line should contain one non-negative integer indicating the number of the ways for n and k specified in the corresponding dataset. You may assume that it is less than 231.

Sample Input

24 3
24 2
2 1
1 1
4 2
18 3
17 1
17 3
17 4
100 5
1000 10
1120 14
0 0

Sample Output

2
3
1
0
0
2
1
0
1
55
200102899
2079324314 思路:prim[]为素数表;
   f[i][j]为j拆分成i个素数和的方案数(1<=i&&i<=14,prim[i]<=j&&j<=1199) 边界f[0][0]=1;
   int num 为prim[]的表长;
   使用DP计算k个不同素数的和为n的方案总数:
      枚举prim[]中的prim[i](0<=i&&i<=num);
        按递减顺序枚举素数的个数j(14>=j&&j>=1);
           递减枚举前j个素数的和p(1199>=p&&p>=prim[i]);
              累计prim[i]作为第j个素数的方案总数f[j][p]+=f[j-1][p-prim[i]];
      
   f[k][n]即为解!!!!!!
 #include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<iomanip>
#include<cmath>
#include<vector>
#include<queue>
#include<stack>
using namespace std;
#define PI 3.141592653589792128462643383279502
#define N 1200
int prim[N]={,},f[][N],t;
int prime(){
int t=,i,j,flag;
for(i=;i<N;i+=){
for(j=,flag=;prim[j]*prim[j]<=i;j++)
if(i%prim[j]==) flag=;
if(flag){
prim[t++]=i;
}
}
return t-;
}
void s(){
for(int i=;i<=t;i++){
for(int j=;j>=;j--){
for(int p=;p>=prim[i];p--)
f[j][p]+=f[j-][p-prim[i]];
}
}
}
int main(){
//#ifdef CDZSC_June
//freopen("in.txt","r",stdin);
//#endif
//std::ios::sync_with_stdio(false);
t=prime();
int k,n;
while(scanf("%d%d",&n,&k)){
memset(f,,sizeof(f));
f[][]=;
if(k==&&n==) break;
s();
cout<<f[k][n]<<endl;
}
return ;
}

poj 3132的更多相关文章

  1. POJ 3132 &amp; ZOJ 2822 Sum of Different Primes(dp)

    题目链接: POJ:id=3132">http://poj.org/problem?id=3132 ZOJ:http://acm.zju.edu.cn/onlinejudge/show ...

  2. POJ 3132 DP+素数筛

    Sum of Different Primes Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 3684   Accepted ...

  3. {POJ}{动态规划}{题目列表}

    动态规划与贪心相关: {HDU}{4739}{Zhuge Liang's Mines}{压缩DP} 题意:给定20个点坐标,求最多有多少个不相交(点也不相交)的正方形 思路:背包问题,求出所有的正方形 ...

  4. poj上的dp专题

    更新中... http://poj.org/problem?id=1037 dp[i][j][0]表示序列长度为i,以j开始并且前两位下降的合法序列数目; dp[i][j][1]表示序列长度为i, 以 ...

  5. POJ 1694 An Old Stone Game【递归+排序】

    链接: http://poj.org/problem?id=1694 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=27454#probl ...

  6. POJ 3370. Halloween treats 抽屉原理 / 鸽巢原理

    Halloween treats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7644   Accepted: 2798 ...

  7. POJ 2356. Find a multiple 抽屉原理 / 鸽巢原理

    Find a multiple Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7192   Accepted: 3138   ...

  8. POJ 2965. The Pilots Brothers' refrigerator 枚举or爆搜or分治

    The Pilots Brothers' refrigerator Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 22286 ...

  9. POJ 1753. Flip Game 枚举or爆搜+位压缩,或者高斯消元法

    Flip Game Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 37427   Accepted: 16288 Descr ...

随机推荐

  1. 【Atcoder】ARC084 Small Multiple

    [题意]求一个k的倍数使其数位和最小,输出数位和,k<=10^5. [算法]最短路 [题解]考虑极端情况数字是可能爆long long的(例如k*num=100...000),所以确定基本方向是 ...

  2. 【vijos】P1066 弱弱的战壕

    [算法]线段树 [题解]将所有坐标按x(第一)和y(第二)从小到大排序,再按顺序插入线段树,即在线段树中将y坐标位置+1,这样就能保证每个坐标能包含的点一定先被处理了,每次询问查询1...a[i].y ...

  3. centos6.5下安装svn并且实现多项目管理配置方案

    #安装SVN服务器 yum install subversion #在home下创建svn根目录 mkdir /home/svn #在 /home/svn下创建pro1 , pro2, pro3 三个 ...

  4. 2、MySQL常见数据库引擎及比较?

    MySQL存储引擎简介 MySQL支持数个存储引擎作为对不同表的类型的处理器.MySQL存储引擎包括处理事务安全表的引擎和处理非事务安全表的引擎: MyISAM管理非事务表.它提供高速存储和检索,以及 ...

  5. Cordova入门

    创建你的第一个App 因为对接要对接酷音,实现h5跨平台调用客户端的保存和分享功能,所以学了下cordova的入门. 安装Cordova CLI Cordova命令行工具作为npm包分发. 安装cor ...

  6. hdu 1548 A strange lift (dijkstra算法)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1548 题目大意:升降电梯,先给出n层楼,然后给出起始的位置,即使输出从A楼道B楼的最短时间. 注意的几 ...

  7. Problems with Ribbon/Feign/Zuul retry

    原文 https://github.com/spring-cloud/spring-cloud-netflix/issues/1577 I'm using Spring Cloud Camden SR ...

  8. Linux 入门记录:二、Linux 文件系统基本结构

    一.树状目录结构 Linux 文件系统是一个倒置的单根树状结构.文件系统的根为"/":文件名严格区分大小写:路径使用"/"分割(Windows 中使用" ...

  9. Style2Paints:用AI技术为线稿快速上色的工具(GitHub 3310颗星)

    python 开源项目: Style2Paints:用AI技术为线稿快速上色的工具(GitHub 3310颗星) https://github.com/lllyasviel/style2paints

  10. Lodash使用示例(比较全)

    <html> <head> <meta name="viewport" content="width=device-width" ...