poj 3132
Time Limit: 5000MS | Memory Limit: 65536K | |
Total Submissions: 3360 | Accepted: 2092 |
Description
A positive integer may be expressed as a sum of different prime numbers (primes), in one way or another. Given two positive integers n and k, you should count the number of ways to express n as a sum of k different primes. Here, two ways are considered to be the same if they sum up the same set of the primes. For example, 8 can be expressed as 3 + 5 and 5 + 3 but the are not distinguished.
When n and k are 24 and 3 respectively, the answer is two because there are two sets {2, 3, 19} and {2, 5, 17} whose sums are equal to 24. There are not other sets of three primes that sum up to 24. For n = 24 and k = 2, the answer is three, because there are three sets {5, 19}, {7, 17} and {11, 13}. For n = 2 and k = 1, the answer is one, because there is only one set {2} whose sum is 2. For n = 1 and k = 1, the answer is zero. As 1 is not a prime, you shouldn’t count {1}. For n = 4 and k = 2, the answer is zero, because there are no sets of two different primes whose sums are 4.
Your job is to write a program that reports the number of such ways for the given n and k.
Input
The input is a sequence of datasets followed by a line containing two zeros separated by a space. A dataset is a line containing two positive integers n and k separated by a space. You may assume that n ≤ 1120 and k ≤ 14.
Output
The output should be composed of lines, each corresponding to an input dataset. An output line should contain one non-negative integer indicating the number of the ways for n and k specified in the corresponding dataset. You may assume that it is less than 231.
Sample Input
24 3
24 2
2 1
1 1
4 2
18 3
17 1
17 3
17 4
100 5
1000 10
1120 14
0 0
Sample Output
2
3
1
0
0
2
1
0
1
55
200102899
2079324314 思路:prim[]为素数表;
f[i][j]为j拆分成i个素数和的方案数(1<=i&&i<=14,prim[i]<=j&&j<=1199) 边界f[0][0]=1;
int num 为prim[]的表长;
使用DP计算k个不同素数的和为n的方案总数:
枚举prim[]中的prim[i](0<=i&&i<=num);
按递减顺序枚举素数的个数j(14>=j&&j>=1);
递减枚举前j个素数的和p(1199>=p&&p>=prim[i]);
累计prim[i]作为第j个素数的方案总数f[j][p]+=f[j-1][p-prim[i]];
f[k][n]即为解!!!!!!
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<iomanip>
#include<cmath>
#include<vector>
#include<queue>
#include<stack>
using namespace std;
#define PI 3.141592653589792128462643383279502
#define N 1200
int prim[N]={,},f[][N],t;
int prime(){
int t=,i,j,flag;
for(i=;i<N;i+=){
for(j=,flag=;prim[j]*prim[j]<=i;j++)
if(i%prim[j]==) flag=;
if(flag){
prim[t++]=i;
}
}
return t-;
}
void s(){
for(int i=;i<=t;i++){
for(int j=;j>=;j--){
for(int p=;p>=prim[i];p--)
f[j][p]+=f[j-][p-prim[i]];
}
}
}
int main(){
//#ifdef CDZSC_June
//freopen("in.txt","r",stdin);
//#endif
//std::ios::sync_with_stdio(false);
t=prime();
int k,n;
while(scanf("%d%d",&n,&k)){
memset(f,,sizeof(f));
f[][]=;
if(k==&&n==) break;
s();
cout<<f[k][n]<<endl;
}
return ;
}
poj 3132的更多相关文章
- POJ 3132 & ZOJ 2822 Sum of Different Primes(dp)
题目链接: POJ:id=3132">http://poj.org/problem?id=3132 ZOJ:http://acm.zju.edu.cn/onlinejudge/show ...
- POJ 3132 DP+素数筛
Sum of Different Primes Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 3684 Accepted ...
- {POJ}{动态规划}{题目列表}
动态规划与贪心相关: {HDU}{4739}{Zhuge Liang's Mines}{压缩DP} 题意:给定20个点坐标,求最多有多少个不相交(点也不相交)的正方形 思路:背包问题,求出所有的正方形 ...
- poj上的dp专题
更新中... http://poj.org/problem?id=1037 dp[i][j][0]表示序列长度为i,以j开始并且前两位下降的合法序列数目; dp[i][j][1]表示序列长度为i, 以 ...
- POJ 1694 An Old Stone Game【递归+排序】
链接: http://poj.org/problem?id=1694 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=27454#probl ...
- POJ 3370. Halloween treats 抽屉原理 / 鸽巢原理
Halloween treats Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 7644 Accepted: 2798 ...
- POJ 2356. Find a multiple 抽屉原理 / 鸽巢原理
Find a multiple Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7192 Accepted: 3138 ...
- POJ 2965. The Pilots Brothers' refrigerator 枚举or爆搜or分治
The Pilots Brothers' refrigerator Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 22286 ...
- POJ 1753. Flip Game 枚举or爆搜+位压缩,或者高斯消元法
Flip Game Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 37427 Accepted: 16288 Descr ...
随机推荐
- HihoCoder 重复旋律
あの旋律を何度も繰り返しでも.あの日見た光景を再現できない 无论将那段旋律重复多少次,也无法重现那一日我们看到的景象 もし切ないならば.時をまきもどしてみるかい? 若是感到惆怅的话,要试着让时光倒流吗 ...
- 【HDU】6012 Lotus and Horticulture (BC#91 T2)
[算法]离散化 [题解] 答案一定存在于区间的左右端点.与区间左右端点距离0.5的点上 于是把所有坐标扩大一倍,排序(即离散化). 让某个点的前缀和表示该点的答案. 初始sum=∑c[i] 在l[i] ...
- 【BZOJ】1666 [Usaco2006 Oct]Another Cow Number Game 奶牛的数字游戏
[算法]贪心&&堆 [题解]反过来看就是合并任意两块木板,花费为木板长度之和. 显然从最小的两块开始合并即可,用堆(优先队列)维护. 经典DP问题石子归并是只能合并相邻两堆石子,所以不 ...
- 基于springmvc静态文件资源配置问题
1.在这里只教大家一种非常实用的 比较简单的一种: 如果两种都配置记得注释掉这种:
- 如何入门 Python 爬虫?
作者:谢科 来源:知乎链接:https://www.zhihu.com/question/20899988/answer/24923424 著作权归作者所有.商业转载请联系作者获得授权,非商业转载 ...
- mybatis 显示 sql日志
#项目日志logging.level.com.zhang.com=debug #mybatis sql相关日志显示logging.level.org.mybatis.spring=DEBUGloggi ...
- CART算法(转)
来源:http://www.cnblogs.com/pinard/p/6053344.html 作者:刘建平Pinard 对于C4.5算法,我们也提到了它的不足,比如模型是用较为复杂的熵来度量,使用了 ...
- Windows 提权对照表 精确到sp版本号
https://www.securitysift.com/download/MS_privesc_and_exploits_table.csv
- linux系统引导流程
1.固件:硬件和软件结合.加电自检是我们按下电源会检测硬件像cpu.内存.网卡等信息.(从硬件层次检测硬件是否可用) 固件设置实例:设置时间 软件时间和硬件时间: [root@VM_0_12_cent ...
- ms17010利用失败解决一则
没有反弹得到session并且提示如下: [-] 10.0.131.2:445 - Service failed to start, ERROR_CODE: 216 换了一个payload set p ...