POJ 3660 Cow Contest (dfs)
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 11129 | Accepted: 6183 |
Description
N (1 ≤ N ≤ 100) cows, conveniently numbered 1..N, are participating in a programming contest. As we all know, some cows code better than others. Each cow has a certain constant skill rating that is unique among the competitors.
The contest is conducted in several head-to-head rounds, each between two cows. If cow A has a greater skill level than cow B (1 ≤ A ≤ N; 1 ≤ B ≤ N; A ≠ B), then cow A will always beat cow B.
Farmer John is trying to rank the cows by skill level. Given a list the results of M (1 ≤ M ≤ 4,500) two-cow rounds, determine the number of cows whose ranks can be precisely determined from the results. It is guaranteed that the results of the rounds will not be contradictory.
Input
* Line 1: Two space-separated integers: N and M
* Lines 2..M+1: Each line contains two space-separated integers that describe the competitors and results (the first integer, A, is the winner) of a single round of competition: A and B
Output
* Line 1: A single integer representing the number of cows whose ranks can be determined
Sample Input
5 5
4 3
4 2
3 2
1 2
2 5
Sample Output
2
Source
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <time.h>
#include <string>
#include <map>
#include <stack>
#include <vector>
#include <set>
#include <queue>
#define inf 10000000
#define mod 10000
typedef long long ll;
using namespace std;
const int N=;
const int M=;
int power(int a,int b,int c){int ans=;while(b){if(b%==){ans=(ans*a)%c;b--;}b/=;a=a*a%c;}return ans;}
int in[N],vis[N];
int n,m,k;
vector<int>vec[N],edg[N];
int dfs1(int x)
{
vis[x]=;
int ans=;
for(int i=;i<vec[x].size();i++){
int v=vec[x][i];
if(!vis[v])ans+=dfs1(v);
}
return ans;
}
int dfs2(int x)
{
int ans=;
vis[x]=;
for(int i=;i<edg[x].size();i++){
int v=edg[x][i];
if(!vis[v])ans+=dfs2(v);
}
return ans;
}
int main()
{
int u,v,ans=;;
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++){
scanf("%d%d",&u,&v);
vec[u].push_back(v);
edg[v].push_back(u);
}
for(int i=;i<=n;i++){
memset(vis,,sizeof vis);
int ret1=dfs1(i);
memset(vis,,sizeof vis);
int ret2=dfs2(i);
//printf("!!%d %d\n",ret1,ret2);
if(ret1+ret2==n+)ans++;
}
printf("%d\n",ans);
return ;
}
POJ 3660 Cow Contest (dfs)的更多相关文章
- POJ 3660 Cow Contest (Floyd)
http://poj.org/problem?id=3660 题目大意:n头牛两两比赛经过m场比赛后能判断名次的有几头可转 化为路径问题,用Floyd将能够到达的路径标记为1,如果一个点能 够到达剩余 ...
- poj 3660 Cow Contest (传递闭包)
/* floyd 传递闭包 开始Floyd 之后统计每个点能到的或能到这个点的 也就是他能和几个人确定胜负关系 第一批要有n-1个 然后每次减掉上一批的人数 麻烦的很 复杂度上天了.... 正难则反 ...
- POJ - 3660 Cow Contest(传递闭包)
题意: n个点,m条边. 若A 到 B的边存在,则证明 A 的排名一定在 B 前. 最后求所有点中,排名可以确定的点的个数. n <= 100, m <= 4500 刚开始还在想是不是拓扑 ...
- POJ 3660 Cow Contest(Floyd求传递闭包(可达矩阵))
Cow Contest Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 16341 Accepted: 9146 Desc ...
- POJ 3660 Cow Contest(传递闭包floyed算法)
Cow Contest Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 5989 Accepted: 3234 Descr ...
- poj 3660 Cow Contest(传递闭包 Floyd)
链接:poj 3660 题意:给定n头牛,以及某些牛之间的强弱关系.按强弱排序.求能确定名次的牛的数量 思路:对于某头牛,若比它强和比它弱的牛的数量为 n-1,则他的名次能够确定 #include&l ...
- POJ 3660 Cow Contest (floyd求联通关系)
Cow Contest 题目链接: http://acm.hust.edu.cn/vjudge/contest/122685#problem/H Description N (1 ≤ N ≤ 100) ...
- POJ 3660 cow contest (Folyed 求传递闭包)
N (1 ≤ N ≤ 100) cows, conveniently numbered 1..N, are participating in a programming contest. As we ...
- POJ 3660 Cow Contest(floyed运用)
Description N (1 ≤ N ≤ 100) cows, conveniently numbered 1..N, are participating in a programming con ...
随机推荐
- 知问前端——Ajax表单插件
传统的表单提交,需要多次跳转页面,极大的消耗资源也缺乏良好的用户体验.而这款form.js表单的Ajax提交插件将解决这个问题. 一.核心方法 官方网站:http://malsup.com/jquer ...
- VirtualBox4.3.12 安装ubuntu 14.04 分辨率过小(600*480)问题的解决方法
作为.net程序员,一直都跟windows系统打交道,在同事的影响下,今天安装了Ubuntu 14. 安装完系统就遇到了这个麻烦事,找了好久才解决,因此记录下来,或许对和我一样的Ubuntu新手有帮助 ...
- 【BZOJ】1589: [Usaco2008 Dec]Trick or Treat on the Farm 采集糖果
[算法]基环树DP [题意]给定若干有向基环树,每个点能走的最远路径长度. [题解] 参考:[BZOJ1589]Trick or Treat on the Farm 基环树裸DP by 空灰冰魂 考虑 ...
- cocos2dx中启用lua脚本
AppDelegate 的 applicationDidFinishLaunching 方法中加载Lua引擎 bool AppDelegate::applicationDidFinishLaunchi ...
- 随机生成数组函数+nth-element函数
这几天做了几道随机生成数组的题,且需要用nth-elemeng函数,并且都是北航出的多校题…… 首先我们先贴一下随机生成数组函数的代码: unsigned x = A, y = B, z = C; u ...
- A Simple Math Problem(矩阵快速幂)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1757 思路:矩阵快速幂模板题,不过因为刚刚入门矩阵快速幂,所以经常把数组f存反,导致本地错误一晚,差点 ...
- 多重部分和问题 (dp)
题目描述 有n种不同大小的数字Ai,每种各Mi个.判断是否能从这些数字中选出若干个使它们的和恰好为K. 这个问题可以用DP求解,递推关系式的定义会影响最终的复杂度. 第一种定义: dp[i+1][j] ...
- 4.0docker部署
设置容器的端口映射 -P :容器暴露的所有端口映射 -p :指定映射容器暴露的端口 Nginx部暑流程 docker run -p 80 --name web -t -i ubuntu /bin/b ...
- inet_select_addr
当通过输出设备向目的地址发送报文时,如果没有源地址,则需要调用inet_select_addr来选择ip地址作为源地址: /* 选择ip地址 通过设备找到ip控制块,从ip控制块中遍历地址列表中的主地 ...
- Linux内核通知链分析【转】
转自:http://www.cnblogs.com/jason-lu/articles/2807758.html Linux内核通知链分析 1. 引言 Linux是单内核架构(monolithic k ...