【题目大意】

现在给出了一个简单无向加权图。你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树。

【思路】

拖欠了三个月整(?)的题目,搞出来弄掉了……本年度写的时候姿势最丑的程序,完全不知道自己在搞些什么,晕乎乎的,算了。

首先,MST具有以下性质:

1.对于同一张无向加权图G,它的最小生成树中长度为L的边长度一定。

2.MST用Kruskal做,处理完长度<=x,此时图的连通性是确定的。

我其实没有读懂第二句话是什么意思,总之大概理解一下,然后乱搞!怎么搞呢。

先按照普通的Kruskal,按照边长排序,然后排序,然后记录下排序为i的长度有几条边numss,下标为nstart到nend。然后弄出一组MST的解。这个不需要单独搞,只需要在记录边的条数的时候一边操作一边进行Kruskal(详细见程序)。

注意一下做完之后有可能进行合并操作的次数,也就是选的边是小于N-1的,也就是没有生成树,特判一下。

接着dfs,枚举每条边取numss个。由于题目条件相同长度的边至多10个,只需暴搜索2^10。每次就判断一下当前这条边左右两边是否已经在同一个并查集里面了,如果不在就可以尝试取这条边合并两段,dfs;或者这条边不取,直接dfs下去。

嗯,然后乘法原理就好了!

什么乱七八糟的题解……

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#define mod 31011
using namespace std;
const int MAXN=+;
struct node
{
int fr,to,len;
bool operator < (const node &x) const
{
return len<x.len;
}
}edge[MAXN];
int num[MAXN],numss=-,nstart[MAXN],nend[MAXN];//num[i]长度排序为i的边长需要取多少个,nstart/nend表示长度排序为i的边长排序为几到几
int n,m,pa[MAXN],tot=,ans,tmpans;
int find(int x){return (pa[x]==x?x:find(pa[x]));} void dfs(int now,int r,int total,int num)
{
if (num>total) return;
if (now>r)
{
if (num==total) tmpans++;
return;
}
int u=edge[now].fr,v=edge[now].to;
int fa=find(u),fb=find(v);
if (fa!=fb)
{
pa[fa]=fb;
dfs(now+,r,total,num+);
pa[fa]=fa;
}
dfs(now+,r,total,num);
} void init()
{
scanf("%d%d",&n,&m);
for (int i=;i<m;i++)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
edge[i]=(node){a,b,c};
}
sort(edge,edge+m);
} void kruskal()
{
memset(num,,sizeof(num));
for (int i=;i<=n;i++) pa[i]=i;
for (int i=;i<m;i++)
{
if (i== || edge[i].len!=edge[i-].len)
{
if (i!=) nend[numss]=i-;
nstart[++numss]=i;
}
int fa=find(edge[i].fr),fb=find(edge[i].to);
if (fa!=fb)
{
pa[fa]=fb;
num[numss]++;
tot++;
}
}
nend[numss]=m-;
} void solve()
{
if (tot<n-) puts("");
else
{
ans=;
for (int i=;i<=n;i++) pa[i]=i;
for (int i=;i<=numss;i++)
{
tmpans=;
dfs(nstart[i],nend[i],num[i],);
ans=(ans*tmpans)%mod;
for (int j=nstart[i];j<=nend[i];j++)
{
int u=edge[j].fr,v=edge[j].to;
int fa=find(u),fb=find(v);
if (fa!=fb) pa[fa]=fb;
}
}
printf("%d",ans);
}
} int main()
{
freopen("bzoj_1016.in","r",stdin);
freopen("bzoj_1016.out","w",stdout);
init();
kruskal();
solve();
return ;
}

【Kruskal+dfs】BZOJ1016- [JSOI2008]最小生成树计数的更多相关文章

  1. bzoj1016: [JSOI2008]最小生成树计数(kruskal+dfs)

    1016: [JSOI2008]最小生成树计数 题目:传送门 题解: 神题神题%%% 据说最小生成树有两个神奇的定理: 1.权值相等的边在不同方案数中边数相等  就是说如果一种方案中权值为1的边有n条 ...

  2. bzoj1016 [JSOI2008]最小生成树计数

    1016: [JSOI2008]最小生成树计数 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3517  Solved: 1396[Submit][St ...

  3. bzoj1016: [JSOI2008]最小生成树计数(kruskal+dfs)

    一直以为这题要martix-tree,实际上因为有相同权值的边不大于10条于是dfs就好了... 先用kruskal求出每种权值的边要选的次数num,然后对于每种权值的边2^num暴搜一下选择的情况算 ...

  4. [BZOJ1016] [JSOI2008] 最小生成树计数 (Kruskal)

    Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...

  5. BZOJ1016:[JSOI2008]最小生成树计数(最小生成树,DFS)

    Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...

  6. [bzoj1016][JSOI2008]最小生成树计数 (Kruskal + Matrix Tree 定理)

    Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...

  7. bzoj1016 [JSOI2008]最小生成树计数——Kruskal+矩阵树定理

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1016 从 Kruskal 算法的过程来考虑产生多种方案的原因,就是边权相同的边有一样的功能, ...

  8. 【Matrix-tree定理】【并查集】【kruscal算法】bzoj1016 [JSOI2008]最小生成树计数

    题意:求一个图的最小生成树个数. 矩阵树定理:一张无向图的生成树个数 = (度数矩阵 - 邻接矩阵)的任意一个n-1主子式的值. 度数矩阵除了对角线上D[i][i]为i的度数(不计自环)外,其他位置是 ...

  9. [BZOJ1016][JSOI2008]最小生成树计数(结论题)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1016 分析: 首先有个性质:如果边集E.E'都可以表示一个图G的最小生成树(当然E和E ...

随机推荐

  1. bzoj 1406 数论

    首先问题的意思就是在找出n以内的所有x^2%n=1的数,那么我们可以得到(x+1)(x-1)=y*n,那么我们知道n|(x+1)(x-1),我们设n=a*b,那么我们对于任意的a,我们满足n%a==0 ...

  2. vue_axios请求后台接口cookie无法传值

    2018年3月7日: 当我们使用http向后台发送请求的时候,需要通过cookie把一些密匙传递给后台做判断授权登陆,当然前提是后台会先把cookie保持到本地. 使用vue开发的时候,会出现这个问题 ...

  3. mysql 1709: Index column size too large. The maximum column size is 767 bytes.

    1709: Index column size too large. The maximum column size is 767 bytes. 修改排序规则解决 utf8_general_ci

  4. Jquery动态添加元素并给元素增加onchange相应

    动态添加元素: $select = $("<select></select>"); $("<option></option> ...

  5. redis之(二十)redis的总结一

    1 什么是Redis Redis(REmote DIctionary Server,远程数据字典服务器)是开源的内存数据库,常用作缓存或者消息队列. Redis的特点: Redis存在于内存,使用硬盘 ...

  6. hdu 3371(kruskal)

    Connect the Cities Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  7. [转]windows消息机制(MFC)

    消息分类与消息队列 Windows中,消息使用统一的结构体(MSG)来存放信息,其中message表明消息的具体的类型, 而wParam,lParam是其最灵活的两个变量,为不同的消息类型时,存放数据 ...

  8. Internet Explorer 浏览器在同一时刻只能从同一域名下载两个文件。

    Internet Explorer 浏览器在同一时刻只能从同一域名下载两个文件.至于原因请见 MSDN Blogs:<Internet Explorer and Connection Limit ...

  9. Jmeter------查看JSON Extractor获取的值

    在接口的使用中,我们会经常用到上个接口response中的值作为下个接口的参数来使用,因此我们为了确保值的正确性,需要知道上个接口返回的值是否正确,因此我们使用到了如下的方法来查看返回值. 1.首先在 ...

  10. hdu多校5

    1002 思路:贪心显然不好贪,直接爆搜. #include<bits/stdc++.h> #define LL long long #define fi first #define se ...