要让Python程序实现多进程(multiprocessing),我们先了解操作系统的相关知识。

Unix/Linux操作系统提供了一个fork()系统调用,它非常特殊。普通的函数调用,调用一次,返回一次,但是fork()调用一次,返回两次,因为操作系统自动把当前进程(称为父进程)复制了一份(称为子进程),然后,分别在父进程和子进程内返回。

子进程永远返回0,而父进程返回子进程的ID。这样做的理由是,一个父进程可以fork出很多子进程,所以,父进程要记下每个子进程的ID,而子进程只需要调用getppid()就可以拿到父进程的ID。

Python的os模块封装了常见的系统调用,其中就包括fork,可以在Python程序中轻松创建子进程:

 # /usr/bin/python
import os
import time def main():
pid = os.fork()
if pid == 0: # 子进程中返回0
print("I am child process %d, my parent is %d" % (os.getpid(), os.getppid()))
time.sleep(1)
else: # 父进程中返回子进程id
print("I %d just created child %d" % (os.getpid(), pid))
time.sleep(1) # 防止父进程提前结束,子进程将由init进程接管,导致子进程中的os。getppid()输出的进程id是1 if __name__ == '__main__':
main()

程序运行结果:

 I 20981 just created child 20982
I am child process 20982, my parent is 20981

由于Windows没有fork调用,上面的代码在Windows上无法运行。在Linux,Mac,Unix上都可以运行

有了fork调用,一个进程在接到新任务时就可以复制出一个子进程来处理新任务,常见的Apache服务器就是由父进程监听端口,每当有新的http请求时,就fork出子进程来处理新的http请求。

multiprocessing

如果你打算编写多进程的服务程序,Unix/Linux无疑是正确的选择。由于Windows没有fork调用,难道在Windows上无法用Python编写多进程的程序?

由于Python是跨平台的,自然也应该提供一个跨平台的多进程支持。multiprocessing模块就是跨平台版本的多进程模块。

multiprocessing模块提供了一个Process类来代表一个进程对象,下面的例子演示了启动一个子进程并等待其结束:

(1)Process类:

 import multiprocessing
import os
import time # 子进程要执行的代码
def run_process(i):
print("%d Child %s process run" % (i, multiprocessing.current_process().name, ))
time.sleep(1)
print("%d Child %s process end" % (i, multiprocessing.current_process().name,)) def main():
print("Process %d run" % (os.getpid()))
p1 = multiprocessing.Process(target=run_process, args=(1,)) # 和多线程Thread类创建实例相似
p1.start()
p1.join() # 主进程等待子进程结束
print("Process %d stop" % (os.getpid())) if __name__ == '__main__':
main()

执行结果如下:

 Process 22324 run
1 Child Process-1 process run
1 Child Process-1 process end
Process 22324 stop

创建子进程时,只需要传入一个执行函数和函数的参数,创建一个Process实例,用start()方法启动,这样创建进程比fork()还要简单。

join()方法可以等待子进程结束后再继续往下运行,通常用于进程间的同步。

(2)Pool类:

在使用Python进行系统管理时,特别是同时操作多个文件目录或者远程控制多台主机,并行操作可以节约大量的时间。如果操作的对象数目不大时,还可以直接使用Process类动态的生成多个进程,十几个还好,但是如果上百个甚至更多,那手动去限制进程数量就显得特别的繁琐,此时Pool类就派上用场了。 
Pool类可以提供指定数量的进程供用户调用,当有新的请求提交到Pool中时,如果池还没有满,就会创建一个新的进程来执行请求。如果池满,请求就会告知先等待,直到池中有进程结束,才会创建新的进程来执行这些请求。

 import multiprocessing
import os
import time def run_process(i):
print("%d Child %s process run at %s" % (i, multiprocessing.current_process().name, time.time()))
time.sleep(1)
print("%d Child %s process end" % (i, multiprocessing.current_process().name,)) def main():
print("Process %d run" % (os.getpid()))
p2 = multiprocessing.Pool(multiprocessing.cpu_count())
for i in range(5):
p2.apply_async(run_process, args=(i,)) # 该函数用于启动进程,传递不定参数,主进程是非阻塞且支持结果返回进行回调。
p2.close() # 关闭进程池(pool),使其不在接受新的任务。
p2.join() # 主进程阻塞等待子进程的退出,join方法必须在close或terminate之后使用。
print("Process %d stop" % (os.getpid())) if __name__ == '__main__':
main()

运行结果:

 Process 29676 run
0 Child SpawnPoolWorker-1 process run at 1487744098.910444
1 Child SpawnPoolWorker-3 process run at 1487744098.931447
2 Child SpawnPoolWorker-4 process run at 1487744098.936447
3 Child SpawnPoolWorker-2 process run at 1487744098.96145
0 Child SpawnPoolWorker-1 process end
4 Child SpawnPoolWorker-1 process run at 1487744099.911545
1 Child SpawnPoolWorker-3 process end
2 Child SpawnPoolWorker-4 process end
3 Child SpawnPoolWorker-2 process end
4 Child SpawnPoolWorker-1 process end
Process 29676 stop

代码解读:

Pool对象调用join()方法会等待所有子进程执行完毕,调用join()之前必须先调用close(),调用close()之后就不能继续添加新的Process了。

请注意输出的结果,task 0123是立刻执行的,而task 4要等待前面某个task完成后才执行,这是因为Pool的默认大小在我的电脑上是4,因此,最多同时执行4个进程。这是Pool有意设计的限制,并不是操作系统的限制。如果改成:

p2 = multiprocessing.Pool(5)

就可以同时跑5个进程。

由于Pool的默认大小是CPU的核数,如果你的电脑拥有8核CPU,你要提交至少9个子进程才能看到上面的等待效果。

pool类有一个map方法:  def map(self, func, iterable, chunksize=None) 与内置的map函数用法行为基本一致,它会使进程阻塞直到返回结果:

 def square(n):  # 计算平方值
time.sleep(1) #计算一次休眠1s
print(n*n,time.time())
return n*n def main():
print("Process %d run" % (os.getpid()))
number_list = [1, 2, 3, 4, 5, 6]
p2 = multiprocessing.Pool(multiprocessing.cpu_count()) # 本机4核CPU
p2.map(square, number_list)
print("Process %d stop" % (os.getpid())) if __name__ == '__main__':
main()

运行结果:

 Process 12264 run
1 1487744750.823629
4 1487744750.82863
9 1487744750.860633
16 1487744750.873634
25 1487744751.823729
36 1487744751.82873
Process 12264 stop

因为列表中共有6个元素,由于本机CPU有四核,在4个进程内的map方法同时可以对4个元素求平方,所以对于6个元素的列表,程序耗时2s。

由于map方法会使主进程阻塞,直到子进程返回,我们并没有调用p2.join(),主进程还是等待子进程结束

Python高级编程-多进程的更多相关文章

  1. 第十章:Python高级编程-多线程、多进程和线程池编程

    第十章:Python高级编程-多线程.多进程和线程池编程 Python3高级核心技术97讲 笔记 目录 第十章:Python高级编程-多线程.多进程和线程池编程 10.1 Python中的GIL 10 ...

  2. python并发编程&多进程(二)

    前导理论知识见:python并发编程&多进程(一) 一 multiprocessing模块介绍 python中的多线程无法利用多核优势,如果想要充分地使用多核CPU的资源(os.cpu_cou ...

  3. python高级之多进程

    python高级之多进程 本节内容 多进程概念 Process类 进程间通讯 进程同步 进程池 1.多进程概念 multiprocessing is a package that supports s ...

  4. 第八篇:python高级之多进程

    python高级之多进程   python高级之多进程 本节内容 多进程概念 Process类 进程间通讯 进程同步 进程池 1.多进程概念 multiprocessing is a package ...

  5. python高级编程:有用的设计模式3

    # -*- coding: utf-8 -*-__author__ = 'Administrator'#python高级编程:有用的设计模式#访问者:有助于将算法从数据结构中分离出来"&qu ...

  6. python高级编程:有用的设计模式2

    # -*- coding: utf-8 -*- __author__ = 'Administrator' #python高级编程:有用的设计模式 #代理 """ 代理对一 ...

  7. python高级编程:有用的设计模式1

    # -*- coding: utf-8 -*-__author__ = 'Administrator'#python高级编程:有用的设计模式#设计械是可复用的,某种程序上它对软件设计中觉问题提供的语言 ...

  8. python高级编程技巧

    由python高级编程处学习 http://blog.sina.com.cn/s/blog_a89e19440101fb28.html Python列表解析语法[]和生成 器()语法类似 [expr  ...

  9. python高级编程之选择好名称:完

    由于时间关系,python高级编程不在放在这边进行学习了,如果需要的朋友可以看下面的网盘进行下载 # # -*- coding: utf-8 -*- # # python:2.x # __author ...

随机推荐

  1. 【centOS7.3 彻底卸载MySQL】

    废话不多说,直接正面刚. 1.删除MySQL yum remove mysql mysql-server mysql-libs mysql-server; 执行后继续查找相关文件 find / -na ...

  2. c#随便聊聊数据库操作

    最近在学习web后台以及Python,到了程序员的转折年纪了,哎.估计很久不会写博文了.言归正传. 在原理的数据库连接池HiKari项目上.我扩展了独立的3个库,说是3个库,其实原本该是一个库.先聊聊 ...

  3. JSON.stringify()和JSON.parse()的区别

    JSON.stringify()此方法用于将一个对象解析成字符串并返回. JSON.parse()此方法刚好相反是将一个字符串对象解析成一个JSON对象.

  4. TImage保存图片到Stream及从Stream中取图片

    因为一个项目,不得不将图片保存到数据库中,需要的时候再从数据库中读取.初时,以为很简单,不就是一个Stream.事实上,也很简单.度娘一下,代码也很多,但,都是坑! 看一下TImage的源,Pictu ...

  5. 《PHP发送邮件PHPMailer》系列分享专栏

    <PHP发送邮件PHPMailer>已整理成PDF文档,点击可直接下载至本地查阅https://www.webfalse.com/read/201726.html 文章 PHPMailer ...

  6. Java 8 中有趣的操作 Stream

    Stream 不是java io中的stream 对象创建 我们没有必要使用一个迭代来创建对象,直接使用流就可以 String[] strs = {"haha","hoh ...

  7. c语言实现通讯录管理系统(c课程设计)

    工具:Visual C++6.0 说明: 本系统基于C语言实现班级通讯录管理系统,为大一时学习C语言刚入门所做的课程设计.功能包括增.删.查.改等,非常适合初学者练手.通讯录包括的个人信息有姓名.学号 ...

  8. mybatis入门(一):jdbc的缺点

    mybatis的基础内容 1.mybatis的框架原理 2.mybatis开发dao两种方法: a.原始dao开发方法(程序需要编写dao接口和dao实现类) b.mybatis的mapper接口(相 ...

  9. 《图说VR入门》——googleVR入门

    本文章由cartzhang编写,转载请注明出处. 所有权利保留. 文章链接:http://blog.csdn.net/cartzhang/article/details/52959035 作者:car ...

  10. linq中group by 的用法

    如下代码: var dates=(from p in points group p by p.LevelId into g select new { g.Key,g });之后 你会拿到这个数组: 之 ...