POJ 3384 Feng Shui(计算几何の半平面交+最远点对)
Description
Feng shui is the ancient Chinese practice of placement and arrangement of space to achieve harmony with the environment. George has recently got interested in it, and now wants to apply it to his home and bring harmony to it.
There is a practice which says that bare floor is bad for living area since spiritual energy drains through it, so George purchased two similar round-shaped carpets (feng shui says that straight lines and sharp corners must be avoided). Unfortunately, he is unable to cover the floor entirely since the room has shape of a convex polygon. But he still wants to minimize the uncovered area by selecting the best placing for his carpets, and asks you to help.
You need to place two carpets in the room so that the total area covered by both carpets is maximal possible. The carpets may overlap, but they may not be cut or folded (including cutting or folding along the floor border) — feng shui tells to avoid straight lines.
Input
The first line of the input file contains two integer numbers n and r — the number of corners in George’s room (3 ≤ n ≤ 100) and the radius of the carpets (1 ≤ r ≤ 1000, both carpets have the same radius). The following nlines contain two integers xi and yi each — coordinates of the i-th corner (−1000 ≤ xi, yi ≤ 1000). Coordinates of all corners are different, and adjacent walls of the room are not collinear. The corners are listed in clockwise order.
Output
Write four numbers x1, y1, x2, y2 to the output file, where (x1, y1) and (x2, y2) denote the spots where carpet centers should be placed. Coordinates must be precise up to 4 digits after the decimal point.
If there are multiple optimal placements available, return any of them. The input data guarantees that at least one solution exists.
题目大意:给一个凸多边形围成的房子,顺时针给出点,再给两块半径为r的地毯,要求地毯覆盖面积最大且地毯不能切割or折叠,求地毯最大面积覆盖的时候地毯的圆心坐标,任意输出一组解
思路:房子所有边向内移动r,得到一个凸包,凸包上的最远点对即答案之一
PS:数据在http://neerc.ifmo.ru/past/index.html上面有,虽然很多人说这题JPS有问题,但我在WA了无数次之后发现其实还是自己的代码有问题(打错了一个变量名囧)……
暴力枚举最远点对(好牛逼的数据量):
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std; #define EPS 1e-8
#define MAXN 1000 inline int sgn(double x) {
if(fabs(x) < EPS) return ;
return x > ? : -;
} struct Point {
double x, y;
Point(double xx = , double yy = ): x(xx), y(yy) {}
bool operator == (const Point &b) const {
return sgn(x - b.x) == && sgn(y - b.y) == ;
}
};
//cross
inline double operator ^ (const Point &a, const Point &b) {
return a.x * b.y - a.y * b.x;
} inline Point operator - (const Point &a, const Point &b) {
return Point(a.x - b.x, a.y - b.y);
} struct Line {
Point s, e;
double ag;
}; struct polygon {
Point v[MAXN];
int n;
} pg, res; inline double dist(Point &a, Point &b) {
return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
} inline double Cross(Point o, Point s, Point e) {
return (s - o) ^ (e - o);
}
//cross_point
Point operator * (const Line &a, const Line &b) {
Point res;
double u = Cross(a.s, a.e, b.s), v = Cross(a.e, a.s, b.e);
res.x = (b.s.x * v + b.e.x * u)/(u + v);
res.y = (b.s.y * v + b.e.y * u)/(u + v);
return res;
} int parallel(Line a, Line b) {
double u = (a.e.x - a.s.x) * (b.e.y - b.s.y) - (a.e.y - a.s.y) * (b.e.x - b.s.x);
return sgn(u) == ;
} inline void set_vector(double x1, double y1, double x2, double y2, Line &v) {
v.s.x = x1; v.s.y = y1;
v.e.x = x2; v.e.y = y2;
v.ag = atan2(y2 - y1, x2 - x1);
} Line vct[MAXN], deq[MAXN]; bool cmp(const Line &a, const Line &b) {
if(sgn(a.ag - b.ag) == )
return sgn(Cross(b.s, b.e, a.s)) < ;
return a.ag < b.ag;
} int half_planes_cross(Line *v, int vn) {
int i, n;
//sort(v, v + vn, cmp);
for(i = n = ; i < vn; ++i) {
if(sgn(v[i].ag - v[i-].ag) == ) continue;
v[n++] = v[i];
}
int head = , tail = ;
deq[] = v[], deq[] = v[];
for(i = ; i < n; ++i) {
if(parallel(deq[tail - ], deq[tail]) || parallel(deq[head], deq[head + ]))
return false;
while(head < tail && sgn(Cross(v[i].s, v[i].e, deq[tail - ] * deq[tail])) > )
--tail;
while(head < tail && sgn(Cross(v[i].s, v[i].e, deq[head] * deq[head + ])) > )
++head;
deq[++tail] = v[i];
}
while(head < tail && sgn(Cross(deq[head].s, deq[head].e, deq[tail - ] * deq[tail])) > )
--tail;
while(head < tail && sgn(Cross(deq[tail].s, deq[tail].e, deq[head] * deq[head + ])) > )
++head;
if(tail <= head + ) return false;
res.n = ;
for(i = head; i < tail; ++i)
res.v[res.n++] = deq[i] * deq[i + ];
res.v[res.n++] = deq[head] * deq[tail];
res.n = unique(res.v, res.v + res.n) - res.v;
res.v[res.n] = res.v[];
return true;
} void moving(Line v[], int vn, double r) {
for(int i = ; i < vn; ++i) {
double dx = v[i].e.x - v[i].s.x, dy = v[i].e.y - v[i].s.y;
dx = dx / dist(v[i].s, v[i].e) * r;
dy = dy / dist(v[i].s, v[i].e) * r;
v[i].s.x += dy; v[i].e.x += dy;
v[i].s.y -= dx; v[i].e.y -= dx;
}
} int main() {
int n;
double r;
while(scanf("%d%lf", &n, &r) != EOF) {
for(int i = ; i < n; ++i) scanf("%lf%lf", &pg.v[i].x, &pg.v[i].y);
pg.v[n] = pg.v[];
for(int i = ; i < n; ++i)
set_vector(pg.v[i].x, pg.v[i].y, pg.v[i+].x, pg.v[i+].y, vct[i]);
moving(vct, n, r);
half_planes_cross(vct, n);
int ix = , jx = ;
double maxdis = ;
for(int i = ; i < res.n; ++i) {
for(int j = ; j < res.n; ++j) {
if(i == j) continue;
double t = dist(res.v[i], res.v[j]);
if(sgn(t - maxdis) > ) {
maxdis = t;
ix = i, jx = j;
}
}
}
printf("%.4f %.4f %.4f %.4f\n", res.v[ix].x, res.v[ix].y, res.v[jx].x, res.v[jx].y);
}
}
旋转卡壳求最远点对:
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std; #define EPS 1e-8
#define MAXN 1000 inline int sgn(double x) {
if(fabs(x) < EPS) return ;
return x > ? : -;
} struct Point {
double x, y;
Point(double xx = , double yy = ): x(xx), y(yy) {}
bool operator == (const Point &b) const {
return sgn(x - b.x) == && sgn(y - b.y) == ;
}
};
//cross
inline double operator ^ (const Point &a, const Point &b) {
return a.x * b.y - a.y * b.x;
} inline Point operator - (const Point &a, const Point &b) {
return Point(a.x - b.x, a.y - b.y);
} struct Line {
Point s, e;
double ag;
}; struct polygon {
Point v[MAXN];
int n;
} pg, res; inline double dist(Point &a, Point &b) {
return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
} inline double Cross(Point o, Point s, Point e) {
return (s - o) ^ (e - o);
}
//cross_point
Point operator * (const Line &a, const Line &b) {
Point res;
double u = Cross(a.s, a.e, b.s), v = Cross(a.e, a.s, b.e);
res.x = (b.s.x * v + b.e.x * u)/(u + v);
res.y = (b.s.y * v + b.e.y * u)/(u + v);
return res;
} int parallel(Line a, Line b) {
double u = (a.e.x - a.s.x) * (b.e.y - b.s.y) - (a.e.y - a.s.y) * (b.e.x - b.s.x);
return sgn(u) == ;
} inline void set_vector(double x1, double y1, double x2, double y2, Line &v) {
v.s.x = x1; v.s.y = y1;
v.e.x = x2; v.e.y = y2;
v.ag = atan2(y2 - y1, x2 - x1);
} Line vct[MAXN], deq[MAXN]; bool cmp(const Line &a, const Line &b) {
if(sgn(a.ag - b.ag) == )
return sgn(Cross(b.s, b.e, a.s)) < ;
return a.ag < b.ag;
} int half_planes_cross(Line *v, int vn) {
int i, n;
//sort(v, v + vn, cmp);
for(i = n = ; i < vn; ++i) {
if(sgn(v[i].ag - v[i-].ag) == ) continue;
v[n++] = v[i];
}
int head = , tail = ;
deq[] = v[], deq[] = v[];
for(i = ; i < n; ++i) {
if(parallel(deq[tail - ], deq[tail]) || parallel(deq[head], deq[head + ]))
return false;
while(head < tail && sgn(Cross(v[i].s, v[i].e, deq[tail - ] * deq[tail])) > )
--tail;
while(head < tail && sgn(Cross(v[i].s, v[i].e, deq[head] * deq[head + ])) > )
++head;
deq[++tail] = v[i];
}
while(head < tail && sgn(Cross(deq[head].s, deq[head].e, deq[tail - ] * deq[tail])) > )
--tail;
while(head < tail && sgn(Cross(deq[tail].s, deq[tail].e, deq[head] * deq[head + ])) > )
++head;
if(tail <= head + ) return false;
res.n = ;
for(i = head; i < tail; ++i)
res.v[res.n++] = deq[i] * deq[i + ];
res.v[res.n++] = deq[head] * deq[tail];
res.n = unique(res.v, res.v + res.n) - res.v;
res.v[res.n] = res.v[];
return true;
} void moving(Line v[], int vn, double r) {
for(int i = ; i < vn; ++i) {
double dx = v[i].e.x - v[i].s.x, dy = v[i].e.y - v[i].s.y;
dx = dx / dist(v[i].s, v[i].e) * r;
dy = dy / dist(v[i].s, v[i].e) * r;
v[i].s.x += dy; v[i].e.x += dy;
v[i].s.y -= dx; v[i].e.y -= dx;
}
} int ix, jx; double dia_roataing_calipers() {
double dia = ;
ix = jx = ;
int q = ;
for(int i = ; i < res.n; ++i) {
while(sgn(Cross(res.v[i+], res.v[i], res.v[q+]) - Cross(res.v[i+], res.v[i], res.v[q])) > )
q = (q + ) % res.n;
if(sgn(dist(res.v[i], res.v[q]) - dia) > ) {
dia = dist(res.v[i], res.v[q]);
ix = i; jx = q;
}
if(sgn(dist(res.v[i+], res.v[q]) - dia) > ) {
dia = dist(res.v[i+], res.v[q]);
ix = i+; jx = q;
}
}
return dia;
} int main() {
int n;
double r;
while(scanf("%d%lf", &n, &r) != EOF) {
for(int i = ; i < n; ++i) scanf("%lf%lf", &pg.v[i].x, &pg.v[i].y);
pg.v[n] = pg.v[];
for(int i = ; i < n; ++i)
set_vector(pg.v[i].x, pg.v[i].y, pg.v[i+].x, pg.v[i+].y, vct[i]);
moving(vct, n, r);
half_planes_cross(vct, n);
dia_roataing_calipers();
printf("%.4f %.4f %.4f %.4f\n", res.v[ix].x, res.v[ix].y, res.v[jx].x, res.v[jx].y);
}
}
POJ 3384 Feng Shui(计算几何の半平面交+最远点对)的更多相关文章
- POJ 3384 Feng Shui (半平面交)
Feng Shui Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 3743 Accepted: 1150 Speci ...
- POJ 3384 Feng Shui(半平面交向内推进求最远点对)
题目链接 题意 : 两个圆能够覆盖的最大多边形面积的时候两个圆圆心的坐标是多少,两个圆必须在多边形内. 思路 : 向内推进r,然后求多边形最远的两个点就是能覆盖的最大面积. #include < ...
- poj 3384 Feng Shui (Half Plane Intersection)
3384 -- Feng Shui 构造半平面交,然后求凸包上最远点对. 这题的题意是给出一个凸多边形区域,要求在其中放置两个半径为r的圆(不能超出凸多边形区域),要求求出两个圆心,使得多边形中没有被 ...
- POJ 3384 Feng Shui 半平面交
题目大意:一个人很信"Feng Shui",他要在房间里放两个圆形的地毯. 这两个地毯之间可以重叠,可是不能折叠,也不能伸到房间的外面.求这两个地毯可以覆盖的最大范围.并输出这两个 ...
- POJ 3384 放地毯【半平面交】
<题目链接> 题目大意: 给出一个凸多边形的房间,根据风水要求,把两个圆形地毯铺在房间里,不能折叠,不能切割,可以重叠.问最多能覆盖多大空间,输出两个地毯的圆心坐标.多组解输出其中一个,题 ...
- POJ 3384 Feng Shui
http://poj.org/problem?id=3384 题意:给一个凸包,求往里面放两个圆(可重叠)的最大面积时的两个圆心坐标. 思路:先把凸包边往内推R,做半平面交,然后做旋转卡壳,此时得到最 ...
- POJ 3384 Feng Shui --直线切平面
题意:房间是一个凸多边形,要在里面铺设两条半径为r的圆形地毯,可以重叠,现在要求分别铺设到哪,使地毯所占的地面面积最大. 解法:要使圆形地毯所占面积最大,圆形地毯一定是与边相切的,这样才能使尽量不重叠 ...
- POJ 3384 Feng Shui 凸包直径 + 半平面交
G++一直没有过了 换成 C++果断A掉了...It's time to bet RP. 题意:给一个多边形,然后放进去两个圆,让两个圆的覆盖面积尽量最大,输出两个圆心的坐标. 思路:将多边形的边向里 ...
- poj 3335 Rotating Scoreboard(半平面交)
Rotating Scoreboard Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 6420 Accepted: 25 ...
随机推荐
- 简单的反编译class文件并重新编译的方法
在没有.java源码的情况下,如果想修改一个.class文件.可以通过以下步骤实现: 修改前的class文件: 一.反编译.class文件成.java文件. 1.可以使用Java Decompiler ...
- PPTP
一: VPN企业应用分类 1:远程访问VPN服务 员工个人电脑通过远程拨号到企业办公网络,如公司的OA系统. 运维人员远程拨号到DC机房,远程维护服务器. 2:企业内部网络之间VPN服务 公司分支机构 ...
- vue 引入 mint-ui 简单使用
一 npm 方式 1,安装依赖 (已有项目) 如果想简单体验:基于vue-cli /* npm install vue -g npm install vue-cli -g // -g 是否全局 ...
- PHP Mysql数据库连接
1,date_default_timezone_set('PRC');//获取北京时区 header("Content-Type:text/html;charset=utf-8&q ...
- ...续上文(一个小萌新的C语言之旅)
我们继续上次没介绍完的继续讲: 下面我们说一下二进制,二进制是计算技术中广泛采用的一种 数制. 二进制数据是用0和1两个 数码来表示的数.它的基数为2,进位规则是“逢二进一”.那么二进制怎么转化为十进 ...
- AtCoder Regular Contest 098 D - Xor Sum 2 区间异或=相加 DP思想
题意:给出n个数,求它的连续子序列中,满足下列公式,(l,r)的对数有多少对 Al xor Al+1 xor … xor Ar=Al + Al+1 + … + Ar 思路:由题意可以得到,连续子序列, ...
- react路由按需加载方法
使用router4之后以前的按需加载方法require.ensure 是不好使了. 所以我们改用react-loadable插件做按需加载. 第一步: yarn add react-loadable ...
- 博科Brocade 300光纤交换机配置zone教程
光纤交换机作为SAN网络的重要组成部分,在日常应用中非常普遍,本次将以常用的博科交换机介绍基本的配置方法. 博科300实物图: 环境描述: 如上图,四台服务器通过各自的双HBA卡连接至两台博科300光 ...
- SpaceVim 语言模块 erlang
原文连接: https://spacevim.org/cn/layers/lang/erlang/ 模块简介 功能特性 启用模块 快捷键 语言专属快捷键 交互式编程 模块简介 这一模块为 SpaceV ...
- 前端图片转base64,转格式,转blob,上传的总结
1. 图片文件转base64 <input accept="image/gif,image/jpeg,image/jpg,image/png" type="file ...