Description

Panagola, The Lord of city F likes to parade very much. He always inspects his city in his car and enjoys the welcome of his citizens. City F has a regular road system. It looks like a matrix with n+1 west-east roads and m+1 north-south roads. Of course, there are (n+1)×(m+1) road crosses in that system. The parade can start at any cross in the southernmost road and end at any cross in the northernmost road. Panagola will never travel from north to south or pass a cross more than once. Citizens will see Panagola along the sides of every west-east road. People who love Panagola will give him a warm welcome and those who hate him will throw eggs and tomatoes instead. We call a road segment connecting two adjacent crosses in a west-east road a “love-hate zone”. Obviously there are m love-hate zones in every west-east road. When passing a love-hate zone, Panagola may get happier or less happy, depending on how many people love him or hate him in that zone. So we can give every love-hate zone a “welcome value” which may be negative, zero or positive. As his secretary, you must make Panagola as happy as possible. So you have to find out the best route ----- of which the sum of the welcome values is maximal. You decide where to start the parade and where to end it.

When seeing his Citizens, Panagola always waves his hands. He may get tired and need a break. So please never make Panagola travel in a same west-east road for more than k minutes. If it takes p minutes to pass a love-hate zone, we say the length of that love-hate zone is p. Of course you know every love-hate zone’s length.

The figure below illustrates the case in sample input. In this figure, a best route is marked by thicker lines. 

 

Input

There are multiple test cases. Input ends with a line containing three zeros.  Each test case consists of 2×n + 3 lines. 
The first line contains three integers: n, m and k.(0<n<=100,0<m<=10000, 0<=k<=3000000) 
The next n+1 lines stands for n + 1 west-east roads in north to south order. Each line contains m integers showing the welcome values of the road’s m love-hate zones, in west to east order. 
The last n+1 lines also stands for n + 1 west-east roads in north to south order. Each line contains m integers showing the lengths (in minutes) of the road's m love-hate zones, in west to east order. 
 

Output

For each test case, output the sum of welcome values of the best route. The answer can be fit in a 32 bits integer.

题目大意:有一个n*m的矩阵,只能沿着边走,只能往左、往右或往上走,在同一行只能沿一个方向走(走了左边就不能返回走右边了)。打横的边都有一个权值(可能为负数)和一个长度,每行走过的长度不能超过k,打竖的边没有权值和长度。先要从最下面的任意一个点开始,走到最上面的任意一个点,问最大权值和为多少(答案不超过$2^{31}-1$,虽然题目不是这么说的)。

思路:一看就是动态规划,每一行只和上一行的状态有关。因为习惯从小到大循环我们从上往下走,反正都一样。设dp[i][j]为走到第 i 行第 j 个点的最大权值(已往左往右走完),那么dp[i][j] = max(dp[i-1][x] + sum(welcome[i][y])),distance(x, y) ≤ k,y in [x, i]。其中distance和sum(welcome[i][y])可以预处理出来(如sum[i]代表1~i的和,distance(i, j) = sum[j] - sum[i],i ≤ j),平均到处理每个dp[i][j]身上时间复杂度为O(1)。但是这样计算dp数组,时间复杂度高达$O(nm^2)$。

现假设我们从左到右走,那么dp[i][j] = max(dp[i - 1][x] - sum_welcome[x] + sum_welcome[y]) = dp[i][j] = max(dp[i - 1][x] - sum_welcome[x]) + sum_welcome[y],那么对每一个j,所用的dp[i - 1][x] - sum_welcome[x]都是一样的,这里很容易能想到单调队列优化(如果你知道单调队列的话)。每次把队列末尾小于dp[i - 1][j] - sum_welcome[j]弹出,把队头distance(i, x) > k的弹出,队头就是最佳的dp[i - 1][x] - sum_welcome[x]。优化完时间复杂度为$O(nm)$,已经是读入数据的复杂度了。(这里不介绍单调队列)

PS:可恶这题居然不让人在线非要我把整个矩阵一起读进来……

代码(1078MS,可恶啊C++又比G++快一倍):

 #include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; const int MAXN = ;
const int MAXM = ; int wel[MAXN][MAXM], len[MAXN][MAXM];
int sum_w[MAXM], sum_l[MAXM];
int a[MAXM], b[MAXM], head, tail;
int dp[][MAXM];
int n, m, k, cur; inline void insert(int x, int y) {
while(head != tail && a[tail - ] < x) --tail;
a[tail] = x; b[tail] = y; ++tail;
} void solve() {
memset(dp, , sizeof(dp));
cur = ;
for(int i = ; i < n; ++i) {
cur ^= ;
memset(dp[cur], , sizeof(dp[cur])); sum_w[] = sum_l[] = ;
for(int j = ; j <= m; ++j) sum_w[j] = sum_w[j - ] + wel[i][j];
for(int j = ; j <= m; ++j) sum_l[j] = sum_l[j - ] + len[i][j];
head = tail = ;
for(int j = ; j <= m; ++j) {
insert(dp[cur ^ ][j] - sum_w[j], sum_l[j]);
while(k < sum_l[j] - b[head]) ++head;
dp[cur][j] = max(dp[cur][j], a[head] + sum_w[j]);
} sum_w[m] = sum_l[m] = ;
for(int j = m; j > ; --j) sum_w[j - ] = sum_w[j] + wel[i][j];
for(int j = m; j > ; --j) sum_l[j - ] = sum_l[j] + len[i][j];
head = tail = ;
for(int j = m; j >= ; --j) {
insert(dp[cur ^ ][j] - sum_w[j], sum_l[j]);
while(k < sum_l[j] - b[head]) ++head;
dp[cur][j] = max(dp[cur][j], a[head] + sum_w[j]);
}
}
} int main() {
while(scanf("%d%d%d", &n, &m, &k) != EOF) {
if(n == && m == && k == ) break;
++n;
for(int i = ; i < n; ++i)
for(int j = ; j <= m; ++j) scanf("%d", &wel[i][j]);
for(int i = ; i < n; ++i)
for(int j = ; j <= m; ++j) scanf("%d", &len[i][j]);
solve();
int ans = ;
for(int i = ; i <= m; ++i) ans = max(ans, dp[cur][i]);
printf("%d\n", ans);
}
}

HDU 2490 Parade(DPの单调队列)(2008 Asia Regional Beijing)的更多相关文章

  1. HDU 3401 Trade dp+单调队列优化

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3401 Trade Time Limit: 2000/1000 MS (Java/Others)Mem ...

  2. HDU - 3415(DP + 单调队列)

    链接:HDU - 3415 题意:给出一个包含 n 个数的环,求满足长度大于 0 小于等于 k 的最大区间和. 题解:将数组加倍,形成环.求一个前缀和sum.枚举每一个sum[i],以 i 结尾的最大 ...

  3. HDU 5945 题解(DP)(单调队列)

    题面: Fxx and game Time Limit: 3000/1500 MS (Java/Others) Memory Limit: 131072/65536 K (Java/Others) T ...

  4. hdu 4123 树形DP+单调队列

    http://acm.hust.edu.cn/vjudge/problem/25790 这题基本同poj 3162 要注意mx,mx2,vx,vx2每次都要初始化 #include <iostr ...

  5. HDU 4749 Parade Show 2013 ACM/ICPC Asia Regional Nanjing Online

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4749 题目大意:给一个原序列N,再给出一个序列M,问从N中一共可以找出多少个长度为m的序列,序列中的数 ...

  6. HDU 2494/POJ 3930 Elevator(模拟)(2008 Asia Regional Beijing)

    Description Too worrying about the house price bubble, poor Mike sold his house and rent an apartmen ...

  7. HDU 2492 Ping pong(数学+树状数组)(2008 Asia Regional Beijing)

    Description N(3<=N<=20000) ping pong players live along a west-east street(consider the street ...

  8. HDU 2491 Priest John's Busiest Day(贪心)(2008 Asia Regional Beijing)

    Description John is the only priest in his town. October 26th is the John's busiest day in a year be ...

  9. HDU 2489 Minimal Ratio Tree(暴力+最小生成树)(2008 Asia Regional Beijing)

    Description For a tree, which nodes and edges are all weighted, the ratio of it is calculated accord ...

随机推荐

  1. URL参数获取/转码

    JS中对URL进行转码与解码 1.escape 和 unescape escape()不能直接用于URL编码,它的真正作用是返回一个字符的Unicode编码值. 采用unicode字符集对指定的字符串 ...

  2. AJAX 动态加载后台数据 绑定select

    <select id="select"> <!--下拉框数据动态加载--> </select> js:(使用jquery) $(document ...

  3. 使用ABAP CDS视图创建服务

    介绍本文介绍使用ABAP Core Data Services创建OData服务的最快方法. 给出了有关@ OData.publish注释利用率,对数据源CDS实体的引用和从DDIC结构导入的详细信息 ...

  4. Milking Order

    Milking Order 题意:给出m个描述状态,其中包含若干个边的关系,问最多能取x (x<=m)个状态,使得形成的图没有环.就是说取x个状态,用状态中的关系建边,其中不能有环. 题解:最大 ...

  5. vue组件化编程

    vue文件包含3个部分 <template> <div></div> </template> <script> export default ...

  6. 抓猫_KEY

    抓猫 题面如下: [ 题目描述] 流浪猫布满城市的每一个角落, 非常影响市容市貌, 作为城市聘请的抓猫者, 你有一 种捕捉器, 一定可以捕捉到所有走到里面的猫, 更加幸运的是你有一个非常厉害的动物心理 ...

  7. 北京Uber优步司机奖励政策(3月16日)

    滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...

  8. SpringBoot学习:整合shiro(验证码功能和登录次数限制功能)

    项目下载地址:http://download.csdn.NET/detail/aqsunkai/9805821 (一)验证码 首先login.jsp里增加了获取验证码图片的标签: <body s ...

  9. Tomcat - 远程调试配置

    复制一份startup.bat,更名为“startup-debug”. 替换内容如下: call "%EXECUTABLE%" start %CMD_LINE_ARGS% 替换为 ...

  10. WSL跑linux服务程序

    前段时间折腾了一次WSL下的Apache,无奈遇到各种奇葩问题,总是解决不了,最终放弃,甚至得出了一个现在看来比较可笑的结论:WSL是不可能跑Linux服务程序的! 当时的思路想歪了,由于Apache ...