ZOJ3874 Permutation Graph 【分治NTT】
题目链接
题意简述:
在一个序列中,两点间如果有边,当且仅当两点为逆序对
给定一个序列的联通情况,求方案数对\(786433\)取模
题解
自己弄了一个晚上终于弄出来了
首先\(yy\)一下发现一个很重要的性质:
联通块内的点编号必须是连续的
证明:
假设一个联通块编号不连续,设\(a\),\(b\)分别为联通块左侧和联通块右侧中的一个点,\(x\)为\(a\),\(b\)之间不在该联通块内的点
那么显然有\(a > b\),\(a < x\),\(x < b\)
即\(a < x < b\)的同时\(a > b\)
不符
故一个联通块内的编号必须连续
证毕
好了我们有了这样一个性质,那么假设他给我们的联通块不符合这个条件,就直接输出\(0\)【一定要记得,我就是一直挂在这个\(sb\)地方调了半天QAQ】
然后如果符合条件,我们就要计算方案数了
因为联通块已经被分成一段一段,所以任意两个联通块之间一定是递增的,互不干涉
所以我们只需要计算出\(f[i]\)表示\(i\)个点联通块的方案
按套路,我们补集转化,并枚举第一个点所在联通块大小
\]
\(n!\)是总方案,前\(i\)个点联通方案是\(f[i]\),按照性质,前\(i\)个点一定是前\(i\)小的点,与后面\(n - i\)个点没有任何关联,所以后面\(n - i\)个点可以任意排布
这样我们就可以分治\(NTT\)在\(O(nlog^2n)\)的时间内预处理出\(f[i]\)
然后询问的时候根据乘法原理计算即可
时间复杂度\(O(nlog^2n + Tn)\)
如果您常数比较大,就需要优化一下,比如循环展开大法好
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (register int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
#define res register
using namespace std;
const int maxn = 400005,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
const int G = 10,P = 786433;
int R[maxn],c[maxn],w[maxn];
inline int qpow(int a,int b){
int re = 1;
for (; b; b >>= 1,a = 1ll * a * a % P)
if (b & 1) re = 1ll * re * a % P;
return re;
}
void NTT(int* a,int n,int f){
for (res int i = 0; i < n; i++) if (i < R[i]) swap(a[i],a[R[i]]);
for (res int i = 1; i < n; i <<= 1){
int gn = w[i];
for (res int j = 0; j < n; j += (i << 1)){
int g = 1,x,y;
for (res int k = 0; k < i; k++,g = 1ll * g * gn % P){
x = a[j + k],y = 1ll * g * a[j + k + i] % P;
a[j + k] = (x + y) % P,a[j + k + i] = ((x - y) % P + P) % P;
}
}
}
if (f == 1) return;
int nv = qpow(n,P - 2); reverse(a + 1,a + n);
for (res int i = 0; i < n; i++) a[i] = 1ll * a[i] * nv % P;
}
int fac[maxn],fv[maxn],N = 100000;
int f[maxn],A[maxn],B[maxn];
void solve(int l,int r){
if (l == r){f[l] = ((fac[l] - f[l]) % P + P) % P; return;}
int mid = l + r >> 1;
solve(l,mid);
int n,m,L = 0; n = mid - l;
for (res int i = 0; i <= n; i += 4){
A[i] = f[i + l]; A[i + 1] = f[i + l + 1];
A[i + 2] = f[i + l + 2]; A[i + 3] = f[i + l + 3];
}
n = r - l - 1;
for (res int i = 0; i <= n; i += 4){
B[i] = fac[i + 1]; B[i + 1] = fac[i + 2];
B[i + 2] = fac[i + 3]; B[i + 3] = fac[i + 4];
}
m = mid - (l << 1) + r - 1; n = 1;
while (n <= m) n <<= 1,L++;
for (res int i = 1; i < n; i++) R[i] = (R[i >> 1] >> 1) | ((i & 1) << (L - 1));
for (res int i = mid - l + 1; i < n; i += 4){
A[i] = A[i + 1] = A[i + 2] = A[i + 3] = 0;
}
for (res int i = r - l + 1; i < n; i += 4){
B[i] = B[i + 1] = B[i + 2] = B[i + 3] = 0;
}
NTT(A,n,1); NTT(B,n,1);
for (res int i = 0; i < n; i += 4){
A[i] = 1ll * A[i] * B[i] % P;
A[i + 1] = 1ll * A[i + 1] * B[i + 1] % P;
A[i + 2] = 1ll * A[i + 2] * B[i + 2] % P;
A[i + 3] = 1ll * A[i + 3] * B[i + 3] % P;
}
NTT(A,n,-1);
for (res int i = mid - l; i <= r - l - 1; i++)
f[i + l + 1] = (f[i + l + 1] + A[i]) % P;
solve(mid + 1,r);
}
void init(){
fac[0] = 1;
for (res int i = 1; i <= N; i++) fac[i] = 1ll * fac[i - 1] * i % P;
fv[N] = qpow(fac[N],P - 2); fv[0] = 1;
for (res int i = N - 1; i; i--)
fv[i] = 1ll * fv[i + 1] * (i + 1) % P;
for (res int i = 1; i < maxn; i <<= 1)
w[i] = qpow(G,(P - 1) / (i << 1));
f[0] = 1;
solve(1,N);
REP(i,N) f[i] = (f[i] + P) % P;
//REP(i,11) printf("%d ",f[i]); puts("");
}
int n,m,scc[maxn],vis[maxn];
int main(){
init();
int T = read();
while (T--){
n = read(); m = read(); int ans = 1,x;
REP(i,m) vis[i] = false;
REP(i,m){
x = read();
REP(j,x) scc[read()] = i;
ans = 1ll * ans * f[x] % P;
}
int flag = true;
for (res int i = 1; i <= n; i++){
if (i > 1 && scc[i] != scc[i - 1] && vis[scc[i]]){
flag = false; break;
}
vis[scc[i]] = true;
}
flag ? printf("%d\n",ans) : puts("0");
}
return 0;
}
ZOJ3874 Permutation Graph 【分治NTT】的更多相关文章
- ZOJ 3874 Permutation Graph 分治NTT
Permutation Graph Time Limit: 2 Seconds Memory Limit: 65536 KB Edward has a permutation {a1, a2 ...
- ZOJ 3874 Permutation Graph (分治NTT优化DP)
题面:vjudge传送门 ZOJ传送门 题目大意:给你一个排列,如果两个数构成了逆序对,就在他们之间连一条无向边,这样很多数会构成一个联通块.现在给出联通块内点的编号,求所有可能的排列数 推来推去容易 ...
- ZOJ 3874 Permutation Graph ——分治 NTT
发现每一块一定是按照一定的顺序的. 然后与标号无关,并且相同大小的对答案的影响相同. 然后列出递推式,上NTT+分治就可以了. 然后就可以与输入同阶处理答案了. #include <map> ...
- ZOJ3874 Permutation Graph
Time Limit: 2 Seconds Memory Limit: 65536 KB Edward has a permutation {a1, a2, … an}. He finds ...
- ZOJ3874 Permutation Graph(NTT&&cdq分治)
最近在看几道整体二分还有cdq分治的东西,突然间想起前几个礼拜的ZOJ题,然后看了一下代码,经过了一些深思熟虑之后,发现自己终于看懂了,下面就用别人的代码来剖析一下整个解题的思路吧,具体的内容我再看看 ...
- HDU 5322 Hope (分治NTT优化DP)
题面传送门 题目大意: 假设现在有一个排列,每个数和在它右面第一个比它大的数连一条无向边,会形成很多联通块. 定义一个联通块的权值为:联通块内元素数量的平方. 定义一个排列的权值为:每个联通块的权值之 ...
- [gdoi2018 day1]小学生图论题【分治NTT】
正题 题目大意 一张随机的\(n\)个点的竞赛图,给出它的\(m\)条相互无交简单路径,求这张竞赛图的期望强联通分量个数. \(1\leq n,m\leq 10^5\) 解题思路 先考虑\(m=0\) ...
- #565. 「LibreOJ Round #10」mathematican 的二进制(期望 + 分治NTT)
题面 戳这里,题意简单易懂. 题解 首先我们发现,操作是可以不考虑顺序的,因为每次操作会加一个 \(1\) ,每次进位会减少一个 \(1\) ,我们就可以考虑最后 \(1\) 的个数(也就是最后的和) ...
- LOJ2541 PKUWC2018猎人杀(概率期望+容斥原理+生成函数+分治NTT)
考虑容斥,枚举一个子集S在1号猎人之后死.显然这个概率是w1/(Σwi+w1) (i∈S).于是我们统计出各种子集和的系数即可,造出一堆形如(-xwi+1)的生成函数,分治NTT卷起来就可以了. #i ...
随机推荐
- 「日常训练」Known Notation(ZOJ-3829)
题意与分析 题意是这样的:给一个字符串,字符串中只包含数字和运算符'*'.现在问字符串是不是一个合法的逆波兰式(后缀表达式).已知逆波兰式的空格消除,也就是说123可以看成123也可以看成1和23.如 ...
- JVM常见配置
堆设置 -Xms:初始堆大小 -Xmx:最大堆大小 -XX:NewSize=n:设置年轻代大小 -XX:NewRatio=n:设置年轻代和年老代的比值.如:为3,表示年轻代与年老代比值为1:3,年轻代 ...
- vim基本命令笔记
两种模式 -编辑模式:可以进行正常的编辑操作 左下方显示 -- INSERT -- "在命令模式下输入 i 能够进入编辑模式" -命令模式:可以通过命令 左下方什么也不显示 &qu ...
- commons-lang源码解析之StringUtils
apache的commons工具包是平时使用最多的工具包之一,对其实现方式需要具体了解.commons-lang version 3.1 empty和blank的区别 StringUtils中判断St ...
- LeetCode 104——二叉树中的最大深度
1. 题目 2. 解答 如果根节点为空,直接返回 0.如果根节点非空,递归得到其左右子树的深度,树的深度就为左右子树深度的最大值加 1. /** * Definition for a binary t ...
- Linux 添加虚拟网卡
使用的Linux版本是Centos 7: [root@vnode33 bin]# cat /etc/redhat-release CentOS Linux release (Core) 使用ifcon ...
- c# CLR无法从 COM 上下文 0x51cd20 转换为 COM 上下文 0x51ce90
调试菜单--->异常---->managed debugging assistants栏下ContextSwitchDeadlock 前面的√去掉
- JavaScript初探系列之日期对象
时间对象是一个我们经常要用到的对象,无论是做时间输出.时间判断等操作时都与这个对象离不开.它是一个内置对象——而不是其它对象的属性,允许用户执行各种使用日期和时间的过程. 一 Date 日期对象 ...
- P4编程环境搭建
本文参照了sdnlab上相关文章的搭建推荐. 使用的系统环境为ubuntu 18.04 组件介绍 主要安装五个组件: BMv2:是一款支持P4编程的软件交换机 p4c:是一款P4的编译器 PI:是P4 ...
- 常用排序算法--java版
package com.whw.sortPractice; import java.util.Arrays; public class Sort { /** * 遍历一个数组 * @param sor ...