题目链接

ZOJ3874

题意简述:

在一个序列中,两点间如果有边,当且仅当两点为逆序对

给定一个序列的联通情况,求方案数对\(786433\)取模

题解

自己弄了一个晚上终于弄出来了

首先\(yy\)一下发现一个很重要的性质:

联通块内的点编号必须是连续的

证明:

假设一个联通块编号不连续,设\(a\),\(b\)分别为联通块左侧和联通块右侧中的一个点,\(x\)为\(a\),\(b\)之间不在该联通块内的点

那么显然有\(a > b\),\(a < x\),\(x < b\)

即\(a < x < b\)的同时\(a > b\)

不符

故一个联通块内的编号必须连续

证毕

好了我们有了这样一个性质,那么假设他给我们的联通块不符合这个条件,就直接输出\(0\)【一定要记得,我就是一直挂在这个\(sb\)地方调了半天QAQ】

然后如果符合条件,我们就要计算方案数了

因为联通块已经被分成一段一段,所以任意两个联通块之间一定是递增的,互不干涉

所以我们只需要计算出\(f[i]\)表示\(i\)个点联通块的方案

按套路,我们补集转化,并枚举第一个点所在联通块大小

\[f[n] = n! - \sum\limits_{i = 1}^{n - 1} f[i](n - i)!
\]

\(n!\)是总方案,前\(i\)个点联通方案是\(f[i]\),按照性质,前\(i\)个点一定是前\(i\)小的点,与后面\(n - i\)个点没有任何关联,所以后面\(n - i\)个点可以任意排布

这样我们就可以分治\(NTT\)在\(O(nlog^2n)\)的时间内预处理出\(f[i]\)

然后询问的时候根据乘法原理计算即可

时间复杂度\(O(nlog^2n + Tn)\)

如果您常数比较大,就需要优化一下,比如循环展开大法好

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (register int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
#define res register
using namespace std;
const int maxn = 400005,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
const int G = 10,P = 786433;
int R[maxn],c[maxn],w[maxn];
inline int qpow(int a,int b){
int re = 1;
for (; b; b >>= 1,a = 1ll * a * a % P)
if (b & 1) re = 1ll * re * a % P;
return re;
}
void NTT(int* a,int n,int f){
for (res int i = 0; i < n; i++) if (i < R[i]) swap(a[i],a[R[i]]);
for (res int i = 1; i < n; i <<= 1){
int gn = w[i];
for (res int j = 0; j < n; j += (i << 1)){
int g = 1,x,y;
for (res int k = 0; k < i; k++,g = 1ll * g * gn % P){
x = a[j + k],y = 1ll * g * a[j + k + i] % P;
a[j + k] = (x + y) % P,a[j + k + i] = ((x - y) % P + P) % P;
}
}
}
if (f == 1) return;
int nv = qpow(n,P - 2); reverse(a + 1,a + n);
for (res int i = 0; i < n; i++) a[i] = 1ll * a[i] * nv % P;
}
int fac[maxn],fv[maxn],N = 100000;
int f[maxn],A[maxn],B[maxn];
void solve(int l,int r){
if (l == r){f[l] = ((fac[l] - f[l]) % P + P) % P; return;}
int mid = l + r >> 1;
solve(l,mid);
int n,m,L = 0; n = mid - l;
for (res int i = 0; i <= n; i += 4){
A[i] = f[i + l]; A[i + 1] = f[i + l + 1];
A[i + 2] = f[i + l + 2]; A[i + 3] = f[i + l + 3];
}
n = r - l - 1;
for (res int i = 0; i <= n; i += 4){
B[i] = fac[i + 1]; B[i + 1] = fac[i + 2];
B[i + 2] = fac[i + 3]; B[i + 3] = fac[i + 4];
}
m = mid - (l << 1) + r - 1; n = 1;
while (n <= m) n <<= 1,L++;
for (res int i = 1; i < n; i++) R[i] = (R[i >> 1] >> 1) | ((i & 1) << (L - 1));
for (res int i = mid - l + 1; i < n; i += 4){
A[i] = A[i + 1] = A[i + 2] = A[i + 3] = 0;
}
for (res int i = r - l + 1; i < n; i += 4){
B[i] = B[i + 1] = B[i + 2] = B[i + 3] = 0;
}
NTT(A,n,1); NTT(B,n,1);
for (res int i = 0; i < n; i += 4){
A[i] = 1ll * A[i] * B[i] % P;
A[i + 1] = 1ll * A[i + 1] * B[i + 1] % P;
A[i + 2] = 1ll * A[i + 2] * B[i + 2] % P;
A[i + 3] = 1ll * A[i + 3] * B[i + 3] % P;
}
NTT(A,n,-1);
for (res int i = mid - l; i <= r - l - 1; i++)
f[i + l + 1] = (f[i + l + 1] + A[i]) % P;
solve(mid + 1,r);
}
void init(){
fac[0] = 1;
for (res int i = 1; i <= N; i++) fac[i] = 1ll * fac[i - 1] * i % P;
fv[N] = qpow(fac[N],P - 2); fv[0] = 1;
for (res int i = N - 1; i; i--)
fv[i] = 1ll * fv[i + 1] * (i + 1) % P;
for (res int i = 1; i < maxn; i <<= 1)
w[i] = qpow(G,(P - 1) / (i << 1));
f[0] = 1;
solve(1,N);
REP(i,N) f[i] = (f[i] + P) % P;
//REP(i,11) printf("%d ",f[i]); puts("");
}
int n,m,scc[maxn],vis[maxn];
int main(){
init();
int T = read();
while (T--){
n = read(); m = read(); int ans = 1,x;
REP(i,m) vis[i] = false;
REP(i,m){
x = read();
REP(j,x) scc[read()] = i;
ans = 1ll * ans * f[x] % P;
}
int flag = true;
for (res int i = 1; i <= n; i++){
if (i > 1 && scc[i] != scc[i - 1] && vis[scc[i]]){
flag = false; break;
}
vis[scc[i]] = true;
}
flag ? printf("%d\n",ans) : puts("0");
}
return 0;
}

ZOJ3874 Permutation Graph 【分治NTT】的更多相关文章

  1. ZOJ 3874 Permutation Graph 分治NTT

    Permutation Graph Time Limit: 2 Seconds      Memory Limit: 65536 KB Edward has a permutation {a1, a2 ...

  2. ZOJ 3874 Permutation Graph (分治NTT优化DP)

    题面:vjudge传送门 ZOJ传送门 题目大意:给你一个排列,如果两个数构成了逆序对,就在他们之间连一条无向边,这样很多数会构成一个联通块.现在给出联通块内点的编号,求所有可能的排列数 推来推去容易 ...

  3. ZOJ 3874 Permutation Graph ——分治 NTT

    发现每一块一定是按照一定的顺序的. 然后与标号无关,并且相同大小的对答案的影响相同. 然后列出递推式,上NTT+分治就可以了. 然后就可以与输入同阶处理答案了. #include <map> ...

  4. ZOJ3874 Permutation Graph

    Time Limit: 2 Seconds      Memory Limit: 65536 KB Edward has a permutation {a1, a2, … an}. He finds ...

  5. ZOJ3874 Permutation Graph(NTT&&cdq分治)

    最近在看几道整体二分还有cdq分治的东西,突然间想起前几个礼拜的ZOJ题,然后看了一下代码,经过了一些深思熟虑之后,发现自己终于看懂了,下面就用别人的代码来剖析一下整个解题的思路吧,具体的内容我再看看 ...

  6. HDU 5322 Hope (分治NTT优化DP)

    题面传送门 题目大意: 假设现在有一个排列,每个数和在它右面第一个比它大的数连一条无向边,会形成很多联通块. 定义一个联通块的权值为:联通块内元素数量的平方. 定义一个排列的权值为:每个联通块的权值之 ...

  7. [gdoi2018 day1]小学生图论题【分治NTT】

    正题 题目大意 一张随机的\(n\)个点的竞赛图,给出它的\(m\)条相互无交简单路径,求这张竞赛图的期望强联通分量个数. \(1\leq n,m\leq 10^5\) 解题思路 先考虑\(m=0\) ...

  8. #565. 「LibreOJ Round #10」mathematican 的二进制(期望 + 分治NTT)

    题面 戳这里,题意简单易懂. 题解 首先我们发现,操作是可以不考虑顺序的,因为每次操作会加一个 \(1\) ,每次进位会减少一个 \(1\) ,我们就可以考虑最后 \(1\) 的个数(也就是最后的和) ...

  9. LOJ2541 PKUWC2018猎人杀(概率期望+容斥原理+生成函数+分治NTT)

    考虑容斥,枚举一个子集S在1号猎人之后死.显然这个概率是w1/(Σwi+w1) (i∈S).于是我们统计出各种子集和的系数即可,造出一堆形如(-xwi+1)的生成函数,分治NTT卷起来就可以了. #i ...

随机推荐

  1. Windowserver2012部署always on

    1.首先,安装域环境 IP设置 域服务安装 如果建立域配置时出现 administrator账户密码不符合要求错误: cmd运行命令: net user administrator /password ...

  2. gdb超级基础教程

    GDB超级基础教程 为什么叫超级基础呢,因为我被坑了一把.... 编译选项带 -g 就可以在可执行程序中加入调试信息,然后就可以使用gdb去查看了. 使用help命令就可以看到: (gdb) help ...

  3. 菜鸟之路——机器学习之决策树个人理解及Python实现

    最近开始学习机器学习,以下会记录我学习中遇到的问题以及我个人的理解 决策树算法,网上很多介绍,在这不复制粘贴.下面解释几个关键词就好. 信息熵(entropy):就是信息不确定性的多少 H(x)=-Σ ...

  4. Java简单工厂模式

    Java简单工厂模式 在阎宏博士的<JAVA与模式>一书中开头是这样描述简单工厂模式的:简单工厂模式是类的创建模式,又叫做静态工厂方法(Static Factory Method)模式.简 ...

  5. HDU 4169 Wealthy Family(树形DP)

    Problem Description While studying the history of royal families, you want to know how wealthy each ...

  6. php+原生ajax实现图片文件上传功能实例

    html+js 代码 <!DOCTYPE html> <html> <head> <title>Html5 Ajax 上传文件</title> ...

  7. c++ 反射类型

    来自: 实现代码=== // // Created by lizhen on 2017/9/29. // #ifndef BOOST_ALL_CALLBACKFUNCTION_H #define BO ...

  8. Beta完结--感想及吐槽

    Beta冲刺结束啦!!! Beta冲刺结束啦!!! Beta冲刺结束啦!!! 这时候每个人的心情肯定都是非常激动的.随着Beta冲刺的结束,折磨了我们一整个学期的软工实践也差不多结束了.(实在是太不容 ...

  9. XDA-University: Getting Started

    XDA-University: Getting Started A while back, we introduced XDA-University to the world, an ongoing ...

  10. lintcode-178-图是否是树

    178-图是否是树 给出 n 个节点,标号分别从 0 到 n - 1 并且给出一个 无向 边的列表 (给出每条边的两个顶点), 写一个函数去判断这张`无向`图是否是一棵树 注意事项 你可以假设我们不会 ...