UVA10766:Organising the Organisation(生成树计数)
Organising the Organisation
题目链接:https://vjudge.net/problem/UVA-10766
Description:
I am the chief of the Personnel Division of a moderate-sized company that wishes to remain anonymous, and I am currently facing a small problem for which I need a skilled programmer’s help. Currently, our company is divided into several more or less independent divisions. In order to make our business more efficient, these need to be organised in a hierarchy, indicating which divisions are in charge of other divisions. For instance, if there are four divisions A, B, C and D we could organise them as in Figure 1, with division A controlling divisions B and D, and division D controlling division C. One of the divisions is Central Management (division A in the figure above), and should of course be at the top of the hierarchy, but the relative importance of the remaining divisions is not determined, so in Figure 1 above, division C and D could equally well have switched places so that C was in charge over division D. One complication, however, is that it may be impossible to get some divisions to cooperate with each other, and in such a case, neither of these divisions can be directly in charge of the other. For instance, if in the example above A and D are unable to cooperate, Figure 1 is not a valid way to organise the company. In general, there can of course be many different ways to organise the organisation, and thus it is desirable to find the best one (for instance, it is not a good idea to let the programming people be in charge of the marketing people). This job, however, is way too complicated for you, and your job is simply to help us find out how much to pay the consultant that we hire to find the best organisation for us. In order to determine the consultant’s pay, we need to find out exactly how difficult the task is, which is why you have to count exactly how many different ways there are to organise the organisation. Oh, and I need the answer in five hours.
Input:
The input consists of a series of test cases, at most 50, terminated by end-of-file. Each test cases begins with three integers n, m, k (1 ≤ n ≤ 50, 1 ≤ m ≤ n, 0 ≤ k ≤ 1500). n denotes the number of divisions in the company (for convenience, the divisions are numbered from 1 to n), and k indicates which division is the Central Management division. This is followed by m lines, each containing two integers 1 ≤ i, j ≤ n, indicating that division i and division j cannot cooperate (thus, i cannot be directly in charge of j and j cannot be directly in charge of i). You may assume that i and j are always different.
Output:
For each test case, print the number of possible ways to organise the company on a line by itself. This number will be at least 1 and at most 1015 . Note: The three possible hierarchies in the first sample case
Sample Input:
5 5 2 3 1 3 4 4 5 1 4 5 3 4 1 1 1 4 3 0 2
Sample Output:
3 8 3
题意:
给出n个点,然后一个主结点k,之后给出m个关系,每个关系会输入u,v,表示这两个点不能直接相连。最后问总方案数为多少。
题解:
生成树计数模板题,主要是Matrix-Tree定理,我现在还不会证...但是对于这类题知道就好了吧?
之后构造基尔霍夫矩阵就行了,就是度数矩阵 - 邻接矩阵。
然后用类似于高斯消元的方法去求解n-1阶行列式,最后主对角线的乘积就是答案。
具体见代码吧:
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <cmath>
using namespace std;
typedef long long ll;
const int N = ;
ll b[N][N];
int g[N][N];
int n,m,k;
ll Det(int n){
int i,j,k;
ll ret = ;
for(i=;i<=n;i++){
for(j = i+;j <= n;j++){
while(b[j][i]){
ll tmp=b[i][i]/b[j][i];
for(k = i;k <= n;k++)
b[i][k] -= tmp*b[j][k];
for(k=i;k<=n;k++)
swap(b[i][k],b[j][k]);
ret = -ret; //行列式性质
}
}
if(!b[i][i]) return ;
ret *= b[i][i];
}
if(ret < ) ret = -ret;
return ret;
}
int main(){
while(scanf("%d%d%d",&n,&m,&k)!=EOF){
memset(b,,sizeof(b));
memset(g,,sizeof(g));
for(int i=;i<=m;i++){
int u,v;
scanf("%d%d",&u,&v);
if(u==v) continue ;
g[u][v]=g[v][u]=;//考虑重边
}
for(int i=;i<=n;i++){
b[i][i]=n-;
for(int j=;j<=n;j++){
if(i==j) continue ;
b[i][j]=-;
}
}
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
if(g[i][j]){
b[i][i]--;
b[i][j]=b[j][i]=;
}
}
}
printf("%lld\n",Det(n));
}
return ;
}
UVA10766:Organising the Organisation(生成树计数)的更多相关文章
- UVa 10766 Organising the Organisation (生成树计数)
题意:给定一个公司的人数,然后还有一个boss,然后再给定一些人,他们不能成为直属上下级关系,问你有多少种安排方式(树). 析:就是一个生成树计数,由于有些人不能成为上下级关系,也就是说他们之间没有边 ...
- Uva10766 Organising the Organisation
题目链接戳这里 基尔霍夫矩阵裸题.构建基尔霍夫矩阵(度数矩阵-邻接矩阵),求他的任意\(n-1\)阶主子式的绝对值即为答案. 这题开始用java写,结果BigInteger太慢Tle了. 后来用c++ ...
- 「UVA10766」Organising the Organisation(生成树计数)
BUPT 2017 Summer Training (for 16) #6C 题意 n个点,完全图减去m条边,求生成树个数. 题解 注意可能会给重边. 然后就是生成树计数了. 代码 #include ...
- Organising the Organisation(uva10766)(生成树计数)
Input Output Sample Input 5 5 2 3 1 3 4 4 5 1 4 5 3 4 1 1 1 4 3 0 2 Sample Output 3 8 3 题意: 有一张图上有\( ...
- 生成树的计数(基尔霍夫矩阵):UVAoj 10766 Organising the Organisation SPOJ HIGH - Highways
HIGH - Highways In some countries building highways takes a lot of time... Maybe that's because th ...
- Uva 10766 Organising the Organisation (Matrix_tree 生成树计数)
题目描述: 一个由n个部门组成的公司现在需要分层,但是由于员工间的一些小小矛盾,使得他们并不愿意做上下级,问在满足他们要求以后有多少种分层的方案数? 解题思路: 生成树计数模板题,建立Kirchhof ...
- uva10766生成树计数
此类题是给定一个无向图,求所有生成树的个数,生成树计数要用到Matrix-Tree定理(Kirchhoff矩阵-树定理) G的度数矩阵D[G]是一个n*n的矩阵,并且满足:当i≠j时,dij=0:当i ...
- kuangbin带你飞 生成树专题 : 次小生成树; 最小树形图;生成树计数
第一个部分 前4题 次小生成树 算法:首先如果生成了最小生成树,那么这些树上的所有的边都进行标记.标记为树边. 接下来进行枚举,枚举任意一条不在MST上的边,如果加入这条边,那么肯定会在这棵树上形成一 ...
- 【BZOJ1002】【FJOI2007】轮状病毒(生成树计数)
1002: [FJOI2007]轮状病毒 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 1766 Solved: 946[Submit][Status ...
随机推荐
- Django学习总结- ③
对象属性与继承关系: 对象属性 1. 显示属性 - 开发者手动定义的,直接看的到的 2. 隐式属性 - 系统根据需求,自动创建的对象 - objects 它是model.Manager对象 - 当我们 ...
- Spring Cloud(九):配置中心(消息总线)【Finchley 版】
Spring Cloud(九):配置中心(消息总线)[Finchley 版] 发表于 2018-04-19 | 更新于 2018-05-07 | 我们在 Spring Cloud(七):配置中心 ...
- python3对接聊天机器人API
详情见http://api.qingyunke.com/智能机器人API接口说明支持功能:天气.翻译.藏头诗.笑话.歌词.计算.域名信息/备案/收录查询.IP查询.手机号码归属.人工智能聊天接口地址: ...
- 理解Python中的__builtin__和__builtins__
以Python 2.7为例,__builtin__模块和__builtins__模块的作用在很多情况下是相同的. 但是,在Python 3+中,__builtin__模块被命名为builtins. 所 ...
- 京东2018秋招c++岗 神奇数
题意大概是: 一个数比如242,把所有数字分成两组,而且两组的和相等,那么这个数就是神奇数,此时242,能够分成{2,2}和{4},所以242是神奇数. 题目要求输入n和m求[n,m]区间内神奇数的个 ...
- Python中的相对导入语法
Python中支持相对导入语法,即可以相对于某一个package进行导入,具体语法如下: # 导入"./dir2/spam.py", .表示当前目录 from .dir2 impo ...
- Notes of the scrum meeting(12.9)
meeting time:14:00~17:00p.m.,December 9th,2013 meeting place:一号教学楼209 attendees: 顾育豪 ...
- Alpha冲刺——第二天
Alpha第二天 听说 031502543 周龙荣(队长) 031502615 李家鹏 031502632 伍晨薇 031502637 张柽 031502639 郑秦 1.前言 任务分配是VV.ZQ. ...
- lintcode-42-最大子数组 II
42-最大子数组 II 给定一个整数数组,找出两个 不重叠 子数组使得它们的和最大. 每个子数组的数字在数组中的位置应该是连续的. 返回最大的和. 注意事项 子数组最少包含一个数 样例 给出数组 [1 ...
- <Android>tab选项卡
1.继承TabActivity实现 a) 在布局文件中使用FrameLayout列出Tab组件及Tab中的内容组件 b) Activity要继承TabActivity c ...