还不会这题的多项式求逆的算法。

发现每一项都是一个卷积的形式,那么我们可以使用$NTT$来加速,直接做是$O(n^2logn)$的,我们考虑如何加速转移。

可以采用$cdq$分治的思想,对于区间$[l, r]$中的数,先计算出$[l, mid]$中的数对$[mid + 1, r]$中的数的贡献,然后直接累加到右边去。

容易发现,这样子每一次需要用向量$[l,l + 1, l +  2, \dots, mid]$卷上$g$中$[1, 2, \dots, r - l]$。

时间复杂度$O(nlog^2n)$,感觉这东西跑得并不慢鸭。

Code:

#include <cstdio>
#include <cstring>
using namespace std;
typedef long long ll; const int N = 3e5 + ;
const ll P = 998244353LL; int n, lim, pos[N];
ll f[N], g[N], a[N], b[N]; template <typename T>
inline void read(T &X) {
X = ; char ch = ; T op = ;
for (; ch > ''|| ch < ''; ch = getchar())
if (ch == '-') op = -;
for (; ch >= '' && ch <= ''; ch = getchar())
X = (X << ) + (X << ) + ch - ;
X *= op;
} template <typename T>
inline void swap(T &x, T &y) {
T t = x; x = y; y = t;
} inline ll fpow(ll x, ll y) {
ll res = 1LL;
for (; y > ; y >>= ) {
if (y & ) res = res * x % P;
x = x * x % P;
}
return res;
} inline void prework(int len) {
int l = ;
for (lim = ; lim <= len; lim <<= , ++l);
for (int i = ; i < lim; i++)
pos[i] = (pos[i >> ] >> ) | ((i & ) << (l - ));
} inline void ntt(ll *c, int opt) {
for (int i = ; i < lim; i++)
if (i < pos[i]) swap(c[i], c[pos[i]]);
for (int i = ; i < lim; i <<= ) {
ll wn = fpow(, (P - ) / (i << ));
if (opt == -) wn = fpow(wn, P - );
for (int len = i << , j = ; j < lim; j += len) {
ll w = ;
for (int k = ; k < i; k++, w = w * wn % P) {
ll x = c[j + k], y = c[j + k + i] * w % P;
c[j + k] = (x + y) % P, c[j + k + i] =(x - y + P) % P;
}
}
} if (opt == -) {
ll inv = fpow(lim, P - );
for (int i = ; i < lim; i++) c[i] = c[i] * inv % P;
}
} void solve(int l, int r) {
if (l == r) {
a[l] = (a[l] + b[l]) % P;
return;
} int mid = ((l + r) >> );
solve(l, mid); prework(r - l + );
for (int i = ; i < lim; i++) g[i] = f[i] = ;
for (int i = l; i <= mid; i++) f[i - l] = a[i];
for (int i = ; i <= r - l; i++) g[i - ] = b[i];
ntt(f, ), ntt(g, );
for (int i = ; i < lim; i++) f[i] = f[i] * g[i] % P;
ntt(f, -); for (int i = mid + ; i <= r; i++) a[i] = (a[i] + f[i - l - ]) % P; solve(mid + , r);
} int main() {
read(n); n--;
for (int i = ; i <= n; i++) read(b[i]);
a[] = ;
solve(, n); for (int i = ; i <= n; i++)
printf("%lld%c", a[i], i == n ? '\n' : ' '); return ;
}

Luogu 4721 【模板】分治 FFT的更多相关文章

  1. 洛谷.4721.[模板]分治FFT(NTT)

    题目链接 换一下形式:\[f_i=\sum_{j=0}^{i-1}f_jg_{i-j}\] 然后就是分治FFT模板了\[f_{i,i\in[mid+1,r]}=\sum_{j=l}^{mid}f_jg ...

  2. 解题:洛谷4721 [模板]分治FFT

    题面 这是CDQ入门题,不要被题目名骗了,这核心根本不在不在FFT上啊=.= 因为后面的项的计算依赖于前面的项,不能直接FFT.所以用CDQ的思想,算出前面然后考虑给后面的贡献 #include< ...

  3. 洛谷 P4721 [模板]分治FFT —— 分治FFT / 多项式求逆

    题目:https://www.luogu.org/problemnew/show/P4721 分治做法,考虑左边对右边的贡献即可: 注意最大用到的 a 的项也不过是 a[r-l] ,所以 NTT 可以 ...

  4. 【洛谷4721】【模板】分治FFT(CDQ分治_NTT)

    题目: 洛谷 4721 分析: 我觉得这个 "分治 FFT " 不能算一种特殊的 FFT ,只是 CDQ 分治里套了个用 FFT (或 NTT)计算的过程,二者是并列关系而不是偏正 ...

  5. 洛谷 4721 【模板】分治 FFT——分治FFT / 多项式求逆

    题目:https://www.luogu.org/problemnew/show/P4721 分治FFT:https://www.cnblogs.com/bztMinamoto/p/9749557.h ...

  6. [题解] Luogu P4721 【模板】分治 FFT

    分治FFT的板子为什么要求逆呢 传送门 这个想法有点\(cdq\)啊,就是考虑分治,在算一段区间的时候,我们把他分成两个一样的区间,然后先做左区间的,算完过后把左区间和\(g\)卷积一下,这样就可以算 ...

  7. luoguP4721 【模板】分治 FFT

    P4721 [模板]分治 FFT 链接 luogu 题目描述 给定长度为 \(n-1\) 的数组 \(g[1],g[2],..,g[n-1]\),求 \(f[0],f[1],..,f[n-1]\),其 ...

  8. 洛谷 P4721 【模板】分治 FFT 解题报告

    P4721 [模板]分治 FFT 题目背景 也可用多项式求逆解决. 题目描述 给定长度为 \(n−1\) 的数组 \(g[1],g[2],\dots,g[n-1]\),求 \(f[0],f[1],\d ...

  9. 分治FFT模板

    题目链接:https://www.luogu.org/problemnew/show/P4721 总结了一下蒟蒻FFT/NTT容易写错的地方: ​ 1.rev数组求错. ​ 2.cdq注意顺序:先递归 ...

  10. [luogu P5349] 幂 解题报告 (分治FFT)

    interlinkage: https://www.luogu.org/problemnew/show/P5349 description: solution: 设$g(x)=\sum_{n=0}^{ ...

随机推荐

  1. BZOJ4560 [JLoi2016]字符串覆盖

    题意 字符串A有N个子串B1,B2,-,Bn.如果将这n个子串分别放在恰好一个它在A中出现的位置上(子串之间可以重叠) 这样A中的若干字符就被这N个子串覆盖了.问A中能被覆盖字符个数的最小值和最大值. ...

  2. 洛谷 1600 (NOIp2016) 天天爱跑步——树上差分

    题目:https://www.luogu.org/problemnew/show/P1600 看TJ:https://blog.csdn.net/clove_unique/article/detail ...

  3. bzoj 1415 [Noi2005]聪聪和可可——其实无环的图上概率

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1415 乍一看和“游走”一样.于是高斯消元.n^2状态,复杂度n^6…… 看看TJ,发现因为聪 ...

  4. (转)android adb pull and push

    adb命令下pull的作用是从手机端向电脑端拷文件. 命令:adb pull /sdcard/**.txt   D:\                          说明:将手机卡中的某个文本文件 ...

  5. C++的三大特性?C也可以做到

    C++的三大特性是什么?封装.继承与多态,那么今天这篇文章小编就来介绍一下,如何用C语言实现C++的这三个特性. 1.封装 何为封装? 在面向对象的思想中,将数据和对数据的操作封装在一起——即类. 类 ...

  6. SVN1.6服务端和客户端安装配置指导

    本节向大家描述SVN1.6服务端和客户端安装配置步骤,随着SVN的快速发展,版本也进行了升级更新,本节就和大家一起学习一下SVN1.6服务端和客户端安装配置步骤,欢迎大家一起来学习.下面是具体介绍.1 ...

  7. 【转】Jenkins+Ant+Jmeter搭建持续集成的接口测试平台

    一.什么是接口测试? 接口测试是测试系统组件间接口的一种测试.接口测试主要用于检测外部系统与系统之间以及内部各个子系统之间的交互点.测试的重点是要检查数据的交换,传递和控制管理过程,以及系统间的相互逻 ...

  8. json and pickle 序列化和反序列化

    类似vmware虚拟机里的虚拟主机挂起操作,把当前内存拷贝成文件保存. 上面的这种操作就叫内存序列化:如下图: 有序列化就有反序列化,要把文件里的东西再恢复成字典:eval把字符串变成字典. 但是上面 ...

  9. 子查询语句的thinkphp实现

    语句 SELECT a.id as item_id,a.name as item_name,a.intro as item_intro,b.id,b.money FROM sh_incentive_i ...

  10. C#使用protobuf

    C# protobuf的使用方法 通过.proto文件导出C#支持的.cs类文件 protocolbuffer(以下简称PB)是google 的一种数据交换的格式,它独立于语言,独立于平台.googl ...