还不会这题的多项式求逆的算法。

发现每一项都是一个卷积的形式,那么我们可以使用$NTT$来加速,直接做是$O(n^2logn)$的,我们考虑如何加速转移。

可以采用$cdq$分治的思想,对于区间$[l, r]$中的数,先计算出$[l, mid]$中的数对$[mid + 1, r]$中的数的贡献,然后直接累加到右边去。

容易发现,这样子每一次需要用向量$[l,l + 1, l +  2, \dots, mid]$卷上$g$中$[1, 2, \dots, r - l]$。

时间复杂度$O(nlog^2n)$,感觉这东西跑得并不慢鸭。

Code:

#include <cstdio>
#include <cstring>
using namespace std;
typedef long long ll; const int N = 3e5 + ;
const ll P = 998244353LL; int n, lim, pos[N];
ll f[N], g[N], a[N], b[N]; template <typename T>
inline void read(T &X) {
X = ; char ch = ; T op = ;
for (; ch > ''|| ch < ''; ch = getchar())
if (ch == '-') op = -;
for (; ch >= '' && ch <= ''; ch = getchar())
X = (X << ) + (X << ) + ch - ;
X *= op;
} template <typename T>
inline void swap(T &x, T &y) {
T t = x; x = y; y = t;
} inline ll fpow(ll x, ll y) {
ll res = 1LL;
for (; y > ; y >>= ) {
if (y & ) res = res * x % P;
x = x * x % P;
}
return res;
} inline void prework(int len) {
int l = ;
for (lim = ; lim <= len; lim <<= , ++l);
for (int i = ; i < lim; i++)
pos[i] = (pos[i >> ] >> ) | ((i & ) << (l - ));
} inline void ntt(ll *c, int opt) {
for (int i = ; i < lim; i++)
if (i < pos[i]) swap(c[i], c[pos[i]]);
for (int i = ; i < lim; i <<= ) {
ll wn = fpow(, (P - ) / (i << ));
if (opt == -) wn = fpow(wn, P - );
for (int len = i << , j = ; j < lim; j += len) {
ll w = ;
for (int k = ; k < i; k++, w = w * wn % P) {
ll x = c[j + k], y = c[j + k + i] * w % P;
c[j + k] = (x + y) % P, c[j + k + i] =(x - y + P) % P;
}
}
} if (opt == -) {
ll inv = fpow(lim, P - );
for (int i = ; i < lim; i++) c[i] = c[i] * inv % P;
}
} void solve(int l, int r) {
if (l == r) {
a[l] = (a[l] + b[l]) % P;
return;
} int mid = ((l + r) >> );
solve(l, mid); prework(r - l + );
for (int i = ; i < lim; i++) g[i] = f[i] = ;
for (int i = l; i <= mid; i++) f[i - l] = a[i];
for (int i = ; i <= r - l; i++) g[i - ] = b[i];
ntt(f, ), ntt(g, );
for (int i = ; i < lim; i++) f[i] = f[i] * g[i] % P;
ntt(f, -); for (int i = mid + ; i <= r; i++) a[i] = (a[i] + f[i - l - ]) % P; solve(mid + , r);
} int main() {
read(n); n--;
for (int i = ; i <= n; i++) read(b[i]);
a[] = ;
solve(, n); for (int i = ; i <= n; i++)
printf("%lld%c", a[i], i == n ? '\n' : ' '); return ;
}

Luogu 4721 【模板】分治 FFT的更多相关文章

  1. 洛谷.4721.[模板]分治FFT(NTT)

    题目链接 换一下形式:\[f_i=\sum_{j=0}^{i-1}f_jg_{i-j}\] 然后就是分治FFT模板了\[f_{i,i\in[mid+1,r]}=\sum_{j=l}^{mid}f_jg ...

  2. 解题:洛谷4721 [模板]分治FFT

    题面 这是CDQ入门题,不要被题目名骗了,这核心根本不在不在FFT上啊=.= 因为后面的项的计算依赖于前面的项,不能直接FFT.所以用CDQ的思想,算出前面然后考虑给后面的贡献 #include< ...

  3. 洛谷 P4721 [模板]分治FFT —— 分治FFT / 多项式求逆

    题目:https://www.luogu.org/problemnew/show/P4721 分治做法,考虑左边对右边的贡献即可: 注意最大用到的 a 的项也不过是 a[r-l] ,所以 NTT 可以 ...

  4. 【洛谷4721】【模板】分治FFT(CDQ分治_NTT)

    题目: 洛谷 4721 分析: 我觉得这个 "分治 FFT " 不能算一种特殊的 FFT ,只是 CDQ 分治里套了个用 FFT (或 NTT)计算的过程,二者是并列关系而不是偏正 ...

  5. 洛谷 4721 【模板】分治 FFT——分治FFT / 多项式求逆

    题目:https://www.luogu.org/problemnew/show/P4721 分治FFT:https://www.cnblogs.com/bztMinamoto/p/9749557.h ...

  6. [题解] Luogu P4721 【模板】分治 FFT

    分治FFT的板子为什么要求逆呢 传送门 这个想法有点\(cdq\)啊,就是考虑分治,在算一段区间的时候,我们把他分成两个一样的区间,然后先做左区间的,算完过后把左区间和\(g\)卷积一下,这样就可以算 ...

  7. luoguP4721 【模板】分治 FFT

    P4721 [模板]分治 FFT 链接 luogu 题目描述 给定长度为 \(n-1\) 的数组 \(g[1],g[2],..,g[n-1]\),求 \(f[0],f[1],..,f[n-1]\),其 ...

  8. 洛谷 P4721 【模板】分治 FFT 解题报告

    P4721 [模板]分治 FFT 题目背景 也可用多项式求逆解决. 题目描述 给定长度为 \(n−1\) 的数组 \(g[1],g[2],\dots,g[n-1]\),求 \(f[0],f[1],\d ...

  9. 分治FFT模板

    题目链接:https://www.luogu.org/problemnew/show/P4721 总结了一下蒟蒻FFT/NTT容易写错的地方: ​ 1.rev数组求错. ​ 2.cdq注意顺序:先递归 ...

  10. [luogu P5349] 幂 解题报告 (分治FFT)

    interlinkage: https://www.luogu.org/problemnew/show/P5349 description: solution: 设$g(x)=\sum_{n=0}^{ ...

随机推荐

  1. 【JQuery】学习

    JavaScript参考 JQuery 学习总结及实例 1.JQuery概念 A.Jquery是一个优秀的Javascript框架.它是轻量级的js库 ,它兼容CSS3,还兼容各种浏览器,jQuery ...

  2. LA4728 Squares

    题意 PDF 分析 就是求凸包点集的直径. 当然选择旋转卡壳. 然后是实现上的技巧: 当Area(p[u], p[u+1], p[v+1]) <= Area(p[u], p[u+1], p[v] ...

  3. 关于Spring框架你解多少?

    类似于谈谈你对Spring的了解的题目,在很多面试中都会被提到的. Spring,英文意思是春天的意思.在java的世界里,Spring是一个现时非常流行的开源应用框架. Spring 框架是一个分层 ...

  4. 浅谈Sql各种join的用法

    1.left join.right join.inner join三者区别 left join(左联接) 返回包括左表中的所有记录和右表中联结字段相等的记录 right join(右联接) 返回包括右 ...

  5. QLCDNumber设置背景色和显示数字颜色【转载】

    http://www.qtcn.org/bbs/read-htm-tid-55176.html //LCD时间显示    QLCDNumber *m_pLcdTime = new QLCDNumber ...

  6. Linux:Linux 常用命令讲解(软件、硬件、文件)

    一.Linux 常用命令 所有的命令操作都是在服务器上进行的 自学参考:菜鸟 Linux man + 命令:查看命令的文档: 命令  +  --usage:查看命令的文档: 命令  +  --help ...

  7. python 类实例化,修改属性值

    class User(object): def __init__(self, first_name, last_name, login_attempts): self.first_name = fir ...

  8. python学习(四) 字典:当索引不好用时

    第四章 字典:当索引不好用时 4.1 字典的使用 字典的适用场景: 表示一个游戏棋盘的状态,每个键都是由坐标值组成的元组: 存储文件修改时间,用文件名作为键: 数字电话/地址簿 4.2 创建和使用字典 ...

  9. 虚拟机如何设置外网ip

    实例: 在数据中心机房的一台服务器上安装虚拟机,并在该虚拟机上安装一个操作系统.给该虚拟机配置公网IP,让外网能直接访问到该虚拟上的应用. 这个问题最初觉得简单,不就是桥接嘛,要只让其上网NAT就可以 ...

  10. php写一个判断是否有cookie的脚本

    前言: 刚刚学习完cookie函数,写个练习. 0x01: //其实第二个应该改为elseif,但是我懒.啊哈 <?php $vlas="BnJhiFoPS4"; if(is ...