[BZOJ1176][Balkan2007]Mokia cdq+树状数组
1176: [Balkan2007]Mokia
Time Limit: 30 Sec Memory Limit: 162 MB
Submit: 3134 Solved: 1395
[Submit][Status][Discuss]
Description
维护一个W*W的矩阵,初始值均为S.每次操作可以增加某格子的权值,或询问某子矩阵的总权值.修改操作数M<=160000,询问数Q<=10000,W<=2000000.
Input
第一行两个整数,S,W;其中S为矩阵初始值;W为矩阵大小
接下来每行为一下三种输入之一(不包含引号):
"1 x y a"
"2 x1 y1 x2 y2"
"3"
输入1:你需要把(x,y)(第x行第y列)的格子权值增加a
输入2:你需要求出以左下角为(x1,y1),右上角为(x2,y2)的矩阵内所有格子的权值和,并输出
输入3:表示输入结束
Output
对于每个输入2,输出一行,即输入2的答案
Sample Input
1 2 3 3
2 1 1 3 3
1 2 2 2
2 2 2 3 4
3
Sample Output
5
HINT
保证答案不会超过int范围
Source
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<algorithm>
#define maxq 800000
#define ll long long
using namespace std;
struct data {ll id,x,y,tp,f,a,p;}t[maxq],tmp[maxq];
ll s,w;
ll ans[maxq];
int cnt;
bool cmp1(data t1,data t2) {return t1.x==t2.x?t1.id<t2.id:t1.x<t2.x;}
int ask;
ll sum[];
int lowbit(int x) {return x&(-x);}
bool vis[maxq];
void insert(int x,ll ad) {for(int i=x;i<=w;i+=lowbit(i)) sum[i]+=ad;}
ll query(int x) {
ll re=;
for(int i=x;i;i-=lowbit(i)) re+=sum[i];
return re;
}
void cdq(int l,int r) {
if(l==r) return;
int mid=l+r>>;
int lp=l,rp=mid+;
for(int i=l;i<=r;i++) {
if(t[i].tp==) {
if(t[i].id>mid){ans[t[i].p]+=t[i].f*query(t[i].y);vis[t[i].p]=;}
}
else {if(t[i].id<=mid) insert(t[i].y,t[i].a);}
}
for(int i=l;i<=r;i++) if(t[i].tp==&&t[i].id<=mid) insert(t[i].y,-t[i].a);
for(int i=l;i<=r;i++) {
if(t[i].id<=mid) tmp[lp++]=t[i];
else tmp[rp++]=t[i];
}
for(int i=l;i<=r;i++) t[i]=tmp[i];
cdq(l,mid);cdq(mid+,r);
}
void add(ll x1,ll y1,ll id,ll tp,ll f) {t[cnt].p=id;t[cnt].f=f;t[cnt].tp=tp;t[cnt].x=x1;t[cnt].y=y1;t[cnt].id=cnt;}
int main() {
scanf("%lld%lld",&s,&w);
int tp;
while(scanf("%d",&tp)) {
ask++;
if(tp==) break;
if(tp==) {cnt++;scanf("%lld%lld%lld",&t[cnt].x,&t[cnt].y,&t[cnt].a);t[cnt].id=cnt;t[cnt].tp=;}
else {
ll x1,y1,x2,y2;
scanf("%lld%lld%lld%lld",&x1,&y1,&x2,&y2);
cnt++;add(x1-,y1-,ask,,);cnt++;add(x2,y2,ask,,);
cnt++;add(x1-,y2,ask,,-);cnt++;add(x2,y1-,ask,,-);
ans[ask]+=(y2-y1+)*(x2-x1+)*s;
}
}
sort(t+,t+cnt+,cmp1);
cdq(,cnt);
for(int i=;i<=ask;i++) if(vis[i]) printf("%lld\n",ans[i]);
}
[BZOJ1176][Balkan2007]Mokia cdq+树状数组的更多相关文章
- BZOJ_2683_简单题&&BZOJ_1176_[Balkan2007]Mokia_CDQ分治+树状数组
BZOJ_2683_简单题&&BZOJ_1176_[Balkan2007]Mokia_CDQ分治+树状数组 Description 维护一个W*W的矩阵,初始值均为S.每次操作可以增加 ...
- bzoj3295 [Cqoi2011]动态逆序对 cdq+树状数组
[bzoj3295][Cqoi2011]动态逆序对 2014年6月17日4,7954 Description 对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数. ...
- BZOJ 1176/2683 Mokia (三维偏序CDQ+树状数组)
题目大意: 洛谷传送门 三维偏序裸题.. 每次操作都看成一个三元组$<x,y,t>$,表示$x,y$坐标和操作时间$t $ 询问操作拆成$4$个容斥 接下来就是$CDQ$了,外层按t排序, ...
- bzoj3262: 陌上花开(CDQ+树状数组处理三维偏序问题)
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=3262 题目大意:中文题目 具体思路:CDQ可以处理的问题,一共有三维空间,对于第一维我们 ...
- bzoj 3295 动态逆序对 (三维偏序,CDQ+树状数组)
链接:https://www.lydsy.com/JudgeOnline/problem.php?id=3295 思路: 可以将这道题看成倒着插入,这样就可以转化成求逆序对数,用CDQ分治降维,正反用 ...
- bzoj3262陌上花开 三维数点 cdq+树状数组
大早上的做了一道三维数点一道五位数点,神清气爽! 先给一维排序,变成一个奇怪的动态的二维数点(相当于有一个扫描面扫过去,导致一系列的加点和询问) 然后cdq分治,再变回静态,考虑前半段对后半段的影响 ...
- BZOJ 2716/2648 SJY摆棋子 (三维偏序CDQ+树状数组)
题目大意: 洛谷传送门 这明明是一道KD-Tree,CDQ分治是TLE的做法 化简式子,$|x1-x2|-|y1-y2|=(x1+y1)-(x2+y2)$ 而$CDQ$分治只能解决$x1 \leq x ...
- BZOJ 2141 排队 (三维偏序CDQ+树状数组)
题目大意:略 洛谷传送门 和 [CQOI2015]动态逆序对 这道题一样的思路 一开始的序列视为$n$次插入操作 把每次交换操作看成四次操作,删除$x$,删除$y$,加入$x$,加入$y$ 把每次操作 ...
- BZOJ 3295 [CQOI2011]动态逆序对 (三维偏序CDQ+树状数组)
题目大意: 题面传送门 还是一道三维偏序题 每次操作都可以看成这样一个三元组 $<x,w,t>$ ,操作的位置,权值,修改时间 一开始的序列看成n次插入操作 我们先求出不删除时的逆序对总数 ...
随机推荐
- el-checkbox根据是否被选中执行不同的操作
直接给el-checkbox绑定点击事件是没有效果的,因为它会被解析成其他形式的html,el-checkbox只是一个类名,因此,使用ts和jquery动态绑定事件: mounted() { $(& ...
- linux cfs 负载均衡
确定新的负载的时候,代码中给出的公式是: (old×(2^i-1) + new))/2^i 整理下来是: old + (new-old)/2^i i的范围是[1, 4],也就是说,i的层级越高,那么n ...
- 【SVN】SVN服务器的本地搭建和使用
Subversion是优秀的版本控制工具,其具体的的优点和详细介绍,这里就不再多说. 首先来下载和搭建SVN服务器. 现在Subversion已经迁移到apache网站上了,下载地址: http:// ...
- 【BZOJ 1930】 [Shoi2003]pacman 吃豆豆 最大费用最大流
如果你知道他是网络流的话你就很快会想到一个最大费用最大流的模型,然后你发现可能T,然而你发现你只用增广两次,然后你就开心的打了出来,然后发现被稠密图里spfa的丧病时间复杂度坑了,还是会T.于是我就开 ...
- vue中使用 echarts3.0 或 echarts2.0 (模拟迁徙图,折线图)
一.echarts3.0(官网: http://echarts.baidu.com/) 首先通过npm安装echarts依赖,安装的为3.0版本 npm install echarts -s 也可以使 ...
- hadoop之HDFS与MapReduce
Hadoop历史 雏形开始于2002年的Apache的Nutch,Nutch是一个开源Java 实现的搜索引擎.它提供了我们运行自己的搜索引擎所需的全部工具.包括全文搜索和Web爬虫. 随后在2003 ...
- spring4.3注解
Spring4.3中引进了 {@GetMapping.@PostMapping.@PutMapping.@DeleteMapping.@PatchMapping},分别对应这个查询,插入,更新,删除 ...
- centos关闭ipv6
1.使用lsmod查看ipv6的模块是否被加载. lsmod | grep ipv6 [root@dmhadoop011 ~]# lsmod | grep ipv6 ipv6 ...
- 串的模式匹配算法(求子串位置的定位函数Index(S,T,pos))
串的模式匹配的一般方法如算法4.5(在bo4-1.cpp 中)所示:由主串S 的第pos 个字 符起,检验是否存在子串T.首先令i 等于 pos(i 为S 中当前待比较字符的位序),j 等于 1(j ...
- 常见通用的 JOIN 查询
SQL执行循序: 手写: SELECT DISTINCT <query_list> FROM <left_table> <join type> JOIN <r ...