在飞速发展的云计算大数据时代,Spark是继Hadoop之后,成为替代Hadoop的下一代云计算大数据核心技术,目前Spark已经构建了自己的整个大数据处理生态系统,如流处理、图技术、机器学习、NoSQL查询等方面都有自己的技术,并且是Apache顶级Project,可以预计的是2014年下半年到2015年Spark在社区和商业应用上会有爆发式的增长。

Spark在业界的使用案例

Spark技术在国内外的应用开始越来越广泛,它正在逐渐走向成熟,并在这个领域扮演更加重要的角色。国外一些大型互联网公司已经部署了Spark。例如:一直支持Hadoop的四大商业机构(Cloudera、MapR、Hortonworks、EMC)已纷纷宣布支持Spark;Mahout前一阶段也表示,将不再接受任何形式以MapReduce实现的算法,同时还宣布了基于Spark新的算法;而Cloudera的机器学习框架Oryx的执行引擎也将由Hadoop的MapReduce替换成Spark;另外,Google也已经开始将负载从MapReduce转移到Pregel和Dremel上;FaceBook也宣布将负载转移到Presto上……而目前,我们国内的淘宝、优酷土豆、网易、Baidu、腾讯等企业也已经使用Spark技术在自己的商业生产系统中。

Spark是最新一代的大数据处理框架,在数据统计分析、数据挖掘、流处理、图技术、机器学习、误差查询等方面都有自己的技术,从我们的技术研究和长期业界观察来看,Spark会成为大数据时代集大成的计算框架。随着2014年5月30日Spark  1.0.0的发布,Spark已经相对稳定,可以放心使用。

Spark如何部署到生产环境

对于Spark该如何部署到生产环境中,Spark是最新一代大数据计算框架,使用时需要单独部署集群,Spark集群部署方式主要有三种:Standalone、Yarn、Mesos。一般而言,在部署的时候都会基于HDFS文件存储系统,所以,如果已经有Hadoop平台,部署Spark就非常容易,只需在平台上增加Spark功能即可。目前,国内企业淘宝使用的Spark就是基于Hadoop的yarn。当然也可以采用standalone和zookeeper的方式进行从无到有的构建Spark集群,这也是一种常见和理想的选择,并且这种方式也是官方推荐的。

企业如何做云计算大数据部署的技术选型

现在,谈到云计算大数据话题的时候很多人还是多会提到Hadoop,对Spark了解的人还不是很多,如果企业有计划要部署云计算大数据的话,如何做技术选型是很重要的。对此,Spark亚太研究院院长和首席专家王家林给出了如下建议:

如果企业以前没有云计算大数据集群,选择使用Spark要比Hadoop更为明智,原因是:首先,Hadoop本身的计算模型决定了它的所有工作都要转化成Map、Shuffle和Reduce等核心阶段,由于每次计算都要从磁盘读或者写数据,而且整个计算模型需要网络传输,这就导致越来越难以忍受的延迟性。其次,Hadoop还不能支持交互式应用。

而Spark可以轻松应对数据统计分析、数据挖掘、流处理、图技术、机器学习、误差查询等,且Spark的“One stack  rule them all”的特性也导致部署的简易性,省去多套系统部署的麻烦。

如果技术选型为Spark,那么,解决数据统计分析、实时流计算、数据挖掘基本只需要一个团队即可,而如果采用Hadoop则需要不同团队做处理每一项专门的技术,极大的增加人力成本。

另外,对于已经有Hadoop集群的公司而言,建议尝试使用Spark技术,可以从Spark的Shark或者Spark SQL开始,推荐使用Spark的实时流处理和机器学习技术。

Spark趋势,中型企业如何抉择

Spark因其部署的简易性和“One stack  to rule them all”的特点,是大数据时代中型企业处理大数据的福音。例如,Yahoo!、淘宝、优酷土豆、网易、腾讯等国内大型知名企业已经在商业生产环境下开始使用Spark技术;Intel、IBM、Linkin、Twwitter等国外大型知名企业也都在大力支持Spark。随着这些国内外大企业的使用,Spark技术的发展必然势不可挡,行业普及很快就会到来,因此对于中型企业的使用和普及,只是时间问题。中型公司如果要基于Spark进行部署,只需配备约5-20人的团队,即可在Spark上做数据分析统计、机器学习、实施流处理计算等工作。

对于电信、金融等行业,使用Spark同样势不可挡。在数据统计分析方面,Spark比Hadoop快几十倍,如果是使用内存表,Spark更是比Hadoop快100倍以上。同时Spark的实时流处理、机器学习、图计算也非常高效,可以充分满足电信、金融行业数据挖掘的需要。

作为唯一可以革命Hadoop并正在成为大数据计算框架霸主的Spark技术,由于其“One stack to rule them all”的特性(使用一个统一的技术堆栈解决了大数据处理生态系统中的流处理、图技术、机器学习、NoSQL查询等方面的技术问题),在2014年10月左右会在中国的需求有爆发之势,这种需求包含企业使用Spark的需求和Spark人才的迫切需求,同时,这种需求将不限已经使用Spark的Yahoo!、淘宝、腾讯、网易等国内大型企业,还会包含很多中小企业。

Spark部署及应用的更多相关文章

  1. Spark部署三种方式介绍:YARN模式、Standalone模式、HA模式

    参考自:Spark部署三种方式介绍:YARN模式.Standalone模式.HA模式http://www.aboutyun.com/forum.php?mod=viewthread&tid=7 ...

  2. 基于Docker搭建大数据集群(四)Spark部署

    主要内容 spark部署 前提 zookeeper正常使用 JAVA_HOME环境变量 HADOOP_HOME环境变量 安装包 微云下载 | tar包目录下 Spark2.4.4 一.环境准备 上传到 ...

  3. 大数据系列之并行计算引擎Spark部署及应用

    相关博文: 大数据系列之并行计算引擎Spark介绍 之前介绍过关于Spark的程序运行模式有三种: 1.Local模式: 2.standalone(独立模式) 3.Yarn/mesos模式 本文将介绍 ...

  4. Spark部署

    Spark的部署让人有点儿困惑,有些需要注意的事项,本来我已经装成功了YARN模式的,但是发现了一些问题,出现错误看日志信息,完全看不懂那个错误信息,所以才打算翻译Standalone的部署的文章.第 ...

  5. 再谈spark部署搭建和企业级项目接轨的入门经验(博主推荐)

    进入我这篇博客的博友们,相信你们具备有一定的spark学习基础和实践了. 先给大家来梳理下.spark的运行模式和常用的standalone.yarn部署.这里不多赘述,自行点击去扩展. 1.Spar ...

  6. Spark 部署即提交模式意义解析

    Spark 的官方从 Cluster Mode Overview 中,官方向我们介绍了 cluster 模式的部署方式. Spark 作为独立进程在集群上运行,他们通过 SparkContext 进行 ...

  7. 入门大数据---Spark部署模式与作业提交

    一.作业提交 1.1 spark-submit Spark 所有模式均使用 spark-submit 命令提交作业,其格式如下: ./bin/spark-submit \ --class <ma ...

  8. spark 部署问题

    spark的web UI 端口设置:spark-env.sh 中设置SPARK_MASTER_WEBUI_PORT 为自己想设置的端口号. 其他worker 的web UI 端口默认:8081 mas ...

  9. [Spark] - Spark部署安装

    环境:centos6.0 虚拟机 搭建单机版本的spark 前提条件:搭建好hadoop环境 1. 下载scala进行安装 只需要设置环境变量SCALA_HOME和PATH即可 export SCAL ...

随机推荐

  1. hihocoder 1457(后缀自动机+拓扑排序)

    题意 给定若干组由数字构成的字符串,求所有不重复子串的和(把他们看成十进制),答案mod(1e9+7) 题解: 类似后缀数组的做法,把字符串之间用':'连接,这里用':'是因为':'的ascii码恰好 ...

  2. [CF912A]Tricky Alchemy

    题意:你有a个黄水晶和b个蓝水晶,要求要x个黄水晶球(2黄),y个绿水晶球(1黄1蓝),z个蓝水晶球(3蓝),问还要多少水晶题解:模拟 C++ Code: #include<cstdio> ...

  3. BZOJ 3224 Tyvj 1728 普通平衡树 | Splay 板子+SPlay详细讲解

    下面给出Splay的实现方法(复杂度证明什么的知道是 nlogn 就可以啦) 首先对于一颗可爱的二叉查找树,是不能保证最坏nlogn的复杂度(可以想象把一个升序序列插入) (二叉查找树保证左子树元素大 ...

  4. 停课day5

    一转眼,已经停课五天了. 高二大佬们已经都走了,在机房里面呆着,有时感觉很孤寂. 但是为了能学好竞赛,这些都是在所不惜的. 好像多打打比赛啊,可是cf要FQ,洛谷之类的比赛还不勤. 哎,先去学一发SP ...

  5. Fabric证书解析

    一.证书目录解析   通过cryptogen生成所有证书文件后,以peerOrgannizations的第一个组织树org1为例,每个目录和对应文件的功能如下:   ca: 存放组织的根证书和对应的私 ...

  6. 洛谷P1282 多米诺骨牌 (DP)

    洛谷P1282 多米诺骨牌 题目描述 多米诺骨牌有上下2个方块组成,每个方块中有1~6个点.现有排成行的 上方块中点数之和记为S1,下方块中点数之和记为S2,它们的差为|S1-S2|.例如在图8-1中 ...

  7. rsync安装使用详解

    rsync是类unix系统下的数据镜像备份工具,从软件的命名上就可以看出来了——remote sync.它的特性如下: 可以镜像保存整个目录树和文件系统. 可以很容易做到保持原来文件的权限.时间.软硬 ...

  8. linux查看操作系统是多少位

    有三种方法: 1.echo $HOSTTYPE 2.getconf LONG_BIT,此处不应该是getconf WORD_BIT命令,在64位系统中显示的是32 3.uname -a 出现" ...

  9. iOS 全局变量设置的几种方式~

    在iOS开发过程中关于全局变量的几个方法 1. 在APPDelegate中声明并初始化全局变量.AppDelegate可以在整个应用程序中调用,在其他页面中可以使用代码段获取AppDelegate的全 ...

  10. 2、Distributed Optimization

    一.目录: Distributed dynamic programming (as applied to path-planning problems). Distributed solutions ...