Network

Time Limit: 1000MS

    Memory Limit: 30000K
Total Submissions: 16047   Accepted: 6362   Special Judge

Description

Andrew is working as system administrator and is planning to establish a new network in his company. There will be N hubs in the company, they can be connected to each other using cables. Since each worker of the company must have access to the whole network, each hub must be accessible by cables from any other hub (with possibly some intermediate hubs).
Since cables of different types are available and shorter ones are
cheaper, it is necessary to make such a plan of hub connection, that the
maximum length of a single cable is minimal. There is another problem —
not each hub can be connected to any other one because of compatibility
problems and building geometry limitations. Of course, Andrew will
provide you all necessary information about possible hub connections.

You are to help Andrew to find the way to connect hubs so that all above conditions are satisfied.

Input

The
first line of the input contains two integer numbers: N - the number of
hubs in the network (2 <= N <= 1000) and M - the number of
possible hub connections (1 <= M <= 15000). All hubs are numbered
from 1 to N. The following M lines contain information about possible
connections - the numbers of two hubs, which can be connected and the
cable length required to connect them. Length is a positive integer
number that does not exceed 106. There will be no more than
one way to connect two hubs. A hub cannot be connected to itself. There
will always be at least one way to connect all hubs.

Output

Output
first the maximum length of a single cable in your hub connection plan
(the value you should minimize). Then output your plan: first output P -
the number of cables used, then output P pairs of integer numbers -
numbers of hubs connected by the corresponding cable. Separate numbers
by spaces and/or line breaks.

Sample Input

4 6
1 2 1
1 3 1
1 4 2
2 3 1
3 4 1
2 4 1

Sample Output

1
4
1 2
1 3
2 3
3 4
【分析】首先,这一题有问题。第一,输入文件包含多个测试用据,他没说;第二,测试用例的结果错了,应该是
1
3
1 2
1 3
3 4
而且应该是多判的,可以用Kruskal;
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <climits>
#include <cstring>
#include <string>
#include <set>
#include <map>
#include <queue>
#include <stack>
#include <vector>
#include <list>
#include<functional>
#define mod 1000000007
#define inf 0x3f3f3f3f
#define pi acos(-1.0)
using namespace std;
typedef long long ll;
const int N=;
const int M=;
vector<int>q;
struct Edg {
int v,u;
int w;
} edg[M];
bool cmp(Edg g,Edg h) {
return g.w<h.w;
}
int n,m,k,maxn;
int parent[N];
void init() {
for(int i=; i<n; i++)parent[i]=i;
}
void Build() {
int u,v,w;
for(int i=; i<m; i++) {
scanf("%d%d%d",&u,&v,&w);
edg[i].u=u;
edg[i].v=v;
edg[i].w=w;
}
sort(edg,edg+m,cmp);
}
int Find(int x) {
if(parent[x] != x) parent[x] = Find(parent[x]);
return parent[x];
}//查找并返回节点x所属集合的根节点
void Union(int x,int y) {
x = Find(x);
y = Find(y);
if(x == y) return;
parent[y] = x;
}//将两个不同集合的元素进行合并
void Kruskal() {
int sum=;
int num=;
int u,v;
for(int i=; i<m; i++) {
u=edg[i].u;
v=edg[i].v;
if(Find(u)!=Find(v)) {
sum+=edg[i].w;
maxn=max(maxn,edg[i].w);
q.push_back(i);
num++;
Union(u,v);
}
if(num>=n-) {
printf("%d\n%d\n",maxn,n-); break;
}
}
}
int main() {
while(~scanf("%d%d",&n,&m)) {
while(!q.empty())q.pop_back();
maxn=-;
init();
Build();
Kruskal();
for(int i=; i<q.size(); i++) {
int l=q[i];
printf("%d %d\n",edg[l].u,edg[l].v);
}
}
return ;
}

POJ1861 Network(Kruskal)(并查集)的更多相关文章

  1. poj1861 network(并查集+kruskal最小生成树

    题目地址:http://poj.org/problem?id=1861 题意:输入点数n和边数n,m组边(点a,点b,a到b的权值).要求单条边权值的最大值最小,其他无所谓(所以多解:(.输出单条边最 ...

  2. TOJ 2815 Connect them (kruskal+并查集)

    描述 You have n computers numbered from 1 to n and you want to connect them to make a small local area ...

  3. Minimum Spanning Tree.prim/kruskal(并查集)

    开始了最小生成树,以简单应用为例hoj1323,1232(求连通分支数,直接并查集即可) prim(n*n) 一般用于稠密图,而Kruskal(m*log(m))用于系稀疏图 #include< ...

  4. Connect the Campus (Uva 10397 Prim || Kruskal + 并查集)

    题意:给出n个点的坐标,要把n个点连通,使得总距离最小,可是有m对点已经连接,输入m,和m组a和b,表示a和b两点已经连接. 思路:两种做法.(1)用prim算法时,输入a,b.令mp[a][b]=0 ...

  5. POJ1861 Network (Kruskal算法 +并查集)

    Network Description Andrew is working as system administrator and is planning to establish a new net ...

  6. POJ 2236 Wireless Network(并查集)

    传送门  Wireless Network Time Limit: 10000MS   Memory Limit: 65536K Total Submissions: 24513   Accepted ...

  7. poj 2236:Wireless Network(并查集,提高题)

    Wireless Network Time Limit: 10000MS   Memory Limit: 65536K Total Submissions: 16065   Accepted: 677 ...

  8. POJ 2236 Wireless Network (并查集)

    Wireless Network 题目链接: http://acm.hust.edu.cn/vjudge/contest/123393#problem/A Description An earthqu ...

  9. POJ 2236:Wireless Network(并查集)

    Wireless Network Time Limit: 10000MS   Memory Limit: 65536K Total Submissions: 36363   Accepted: 150 ...

随机推荐

  1. Treap 模板

    感觉平衡树也没有以前想的那么玄乎,(其实set超好用的),非旋式Treap挺好理解,和可并堆,二叉搜索树有很大联系 推荐博客:http://memphis.is-programmer.com/post ...

  2. 判断当前系统当前浏览器是否安装启用 Adobe Flash Player,检查在chrome中的状态

    一.判断当前所在系统 let sUserAgent = navigator.userAgent;let isWin = (navigator.platform == "Win32" ...

  3. Js跑马灯效果 && 在Vue中使用

    DEMO: <!DOCTYPE html><html> <head> <title>滚动播报</title> <meta charse ...

  4. 正确答案 [Hash/枚举]

    正确答案 题目描述 小H与小Y刚刚参加完UOIP外卡组的初赛,就迫不及待的跑出考场对答案. "吔,我的答案和你都不一样!",小Y说道,"我们去找神犇们问答案吧" ...

  5. 手动安装GCC

    01sunxiaoqiang的博客 Centos离线手动安装gcc.g++教程 转载 2016-11-06 17:35:18 标签:linux应用笔记 在安装LINUX系统的时候很可能会没有安装gcc ...

  6. bzoj 2566 calc 拉格朗日插值

    calc Time Limit: 30 Sec  Memory Limit: 512 MBSubmit: 377  Solved: 226[Submit][Status][Discuss] Descr ...

  7. org.apache.hadoop.hdfs.server.datanode.DataNode: Exception in receiveBlock for block

    Hbase依赖的datanode日志中如果出现如下报错信息:DataXceiverjava.io.EOFException: INFO org.apache.hadoop.hdfs.server.da ...

  8. c++虚析构函数的必要性

    我们知道,用C++开发的时候,用来做基类的类的析构函数一般都是虚函数. 可是,为什么要这样做呢?下面用一个小例子来说明: #include<iostream> using namespac ...

  9. Substrings(hdu 4455)

    题意: 给定一个序列ai,个数为n.再给出一系列w:对于每个w,求序列中,所有长度为w的连续子串中的权值和,子串权值为子串中不同数的个数. /* dp[i]表示长度为i的序列不同元素个数之和. 考虑从 ...

  10. python 写 excel 模块 : xlwt

    主要来自:[ python中使用xlrd.xlwt操作excel表格详解 ] 为了方便阅读, 我将原文两个模块拆分为两篇博文: [ python 读 excel 模块: xlrd ] [ python ...