OpenCV中的transpose函数实现图像转置,公式为:

目前fbc_cv库中也实现了transpose函数,支持多通道,uchar和float两种数据类型,经测试,与OpenCV3.1结果完全一致。

实现代码transpose.hpp:

// fbc_cv is free software and uses the same licence as OpenCV
// Email: fengbingchun@163.com

#ifndef FBC_CV_TRANSPOSE_HPP_
#define FBC_CV_TRANSPOSE_HPP_

/* reference: include/opencv2/core.hpp
              modules/core/src/matrix.cpp
*/

#include <typeinfo>
#include "core/mat.hpp"

namespace fbc {

// transposes the matrix
// \f[\texttt{dst} (i,j) =  \texttt{src} (j,i)\f]
// support type: uchar/float, multi-channels
template <typename _Tp, int chs>
int transpose(const Mat_<_Tp, chs>& src, Mat_<_Tp, chs>& dst)
{
	FBC_Assert(typeid(uchar).name() == typeid(_Tp).name() || typeid(float).name() == typeid(_Tp).name()); // uchar || float
	if (dst.empty()) {
		dst = Mat_<_Tp, chs>(src.cols, src.rows);
	} else {
		FBC_Assert(src.rows == dst.cols && src.cols == dst.rows);
	}

	if (src.empty()) {
		dst.release();
		return 0;
	}

	// handle the case of single-column/single-row matrices, stored in STL vectors.
	if (src.rows != dst.cols || src.cols != dst.rows) {
		FBC_Assert(src.size() == dst.size() && (src.cols == 1 || src.rows == 1));
		src.copyTo(dst);
		return 0;
	}

	if (dst.data == src.data) {
		FBC_Assert(dst.cols == dst.rows);
		int n = dst.rows;
		int  step = dst.step;
		uchar* data = dst.ptr();

		for (int i = 0; i < n; i++) {
			_Tp* row = (_Tp*)(data + step*i);
			int i_ = i * chs;

			for (int j = i + 1; j < n; j++) {
				_Tp* data1 = (_Tp*)(data + step * j);
				int j_ = j * chs;

				for (int ch = 0; ch < chs; ch++) {
					std::swap(row[j_ + ch], data1[i_ + ch]);
				}
			}
		}
	} else {
		const uchar* src_ = src.ptr();
		size_t sstep = src.step;
		uchar* dst_ = dst.ptr();
		size_t dstep = dst.step;
		int m = src.cols, n = src.rows;

		for (int i = 0; i < n; i++) {
			const _Tp* s = (const _Tp*)(src_ + sstep*i);
			int i_ = i * chs;

			for (int j = 0; j < m; j++) {
				_Tp* d = (_Tp*)(dst_ + dstep*j);
				int j_ = j * chs;

				for (int ch = 0; ch < chs; ch++) {
					d[i_ + ch] = s[j_ + ch];
				}
			}
		}
	}

	return 0;
}

} // namespace fbc

#endif // FBC_CV_TRANSPOSE_HPP_

测试代码test_transpose.cpp:

#include "test_transpose.hpp"
#include <assert.h>
#include <iostream>
#include <string>
#include <opencv2/opencv.hpp>
#include <transpose.hpp>

int test_transpose_uchar()
{
	cv::Mat matSrc = cv::imread("E:/GitCode/OpenCV_Test/test_images/lena.png", 1);
	if (!matSrc.data) {
		std::cout << "read image fail" << std::endl;
		return -1;
	}

	int width = matSrc.cols;
	int height = matSrc.rows;
	cv::Mat matSrc_;
	cv::resize(matSrc, matSrc_, cv::Size(width, width));

	fbc::Mat_<uchar, 3> mat1(width, width);
	memcpy(mat1.data, matSrc_.data, width * width * 3);
	fbc::transpose(mat1, mat1);

	cv::Mat mat1_(width, width, CV_8UC3);
	memcpy(mat1_.data, matSrc_.data, width * width * 3);
	cv::transpose(mat1_, mat1_);

	assert(mat1.rows == mat1_.rows && mat1.cols == mat1_.cols && mat1.step == mat1_.step);
	for (int y = 0; y < mat1.rows; y++) {
		const fbc::uchar* p1 = mat1.ptr(y);
		const uchar* p2 = mat1_.ptr(y);

		for (int x = 0; x < mat1.step; x++) {
			assert(p1[x] == p2[x]);
		}
	}

	cv::Mat matSave(width, width, CV_8UC3, mat1.data);
	cv::imwrite("E:/GitCode/OpenCV_Test/test_images/transpose_fbc.jpg", matSave);
	cv::imwrite("E:/GitCode/OpenCV_Test/test_images/transpose_cv.jpg", mat1_);

	cv::Mat matSrc1 = cv::imread("E:/GitCode/OpenCV_Test/test_images/1.jpg", 1);
	if (!matSrc1.data) {
		std::cout << "read image fail" << std::endl;
		return -1;
	}

	width = matSrc1.cols;
	height = matSrc1.rows;

	fbc::Mat_<uchar, 3> mat2(height, width, matSrc1.data);
	fbc::Mat_<uchar, 3> mat3(width, height);
	fbc::transpose(mat2, mat3);

	cv::Mat mat2_(height, width, CV_8UC3, matSrc1.data);
	cv::Mat mat3_;
	cv::transpose(mat2_, mat3_);

	assert(mat3.rows == mat3_.rows && mat3.cols == mat3_.cols && mat3.step == mat3_.step);
	for (int y = 0; y < mat3.rows; y++) {
		const fbc::uchar* p1 = mat3.ptr(y);
		const uchar* p2 = mat3_.ptr(y);

		for (int x = 0; x < mat3.step; x++) {
			assert(p1[x] == p2[x]);
		}
	}

	cv::Mat matSave1(width, height, CV_8UC3, mat3.data);
	cv::imwrite("E:/GitCode/OpenCV_Test/test_images/transpose1_fbc.jpg", matSave1);
	cv::imwrite("E:/GitCode/OpenCV_Test/test_images/transpose1_cv.jpg", mat3_);

	return 0;
}

int test_transpose_float()
{
	cv::Mat matSrc = cv::imread("E:/GitCode/OpenCV_Test/test_images/lena.png", 1);
	if (!matSrc.data) {
		std::cout << "read image fail" << std::endl;
		return -1;
	}
	cv::cvtColor(matSrc, matSrc, CV_BGR2GRAY);
	matSrc.convertTo(matSrc, CV_32FC1);

	int width = matSrc.cols;
	int height = matSrc.rows;
	cv::Mat matSrc_;
	cv::resize(matSrc, matSrc_, cv::Size(width, width));

	fbc::Mat_<float, 1> mat1(width, width);
	memcpy(mat1.data, matSrc_.data, width * width * sizeof(float));
	fbc::transpose(mat1, mat1);

	cv::Mat mat1_(width, width, CV_32FC1);
	memcpy(mat1_.data, matSrc_.data, width * width * sizeof(float));
	cv::transpose(mat1_, mat1_);

	assert(mat1.rows == mat1_.rows && mat1.cols == mat1_.cols && mat1.step == mat1_.step);
	for (int y = 0; y < mat1.rows; y++) {
		const fbc::uchar* p1 = mat1.ptr(y);
		const uchar* p2 = mat1_.ptr(y);

		for (int x = 0; x < mat1.step; x++) {
			assert(p1[x] == p2[x]);
		}
	}

	cv::Mat matSrc1 = cv::imread("E:/GitCode/OpenCV_Test/test_images/1.jpg", 1);
	if (!matSrc1.data) {
		std::cout << "read image fail" << std::endl;
		return -1;
	}
	cv::cvtColor(matSrc1, matSrc1, CV_BGR2GRAY);
	matSrc1.convertTo(matSrc1, CV_32FC1);

	width = matSrc1.cols;
	height = matSrc1.rows;

	fbc::Mat_<float, 1> mat2(height, width, matSrc1.data);
	fbc::Mat_<float, 1> mat3(width, height);
	fbc::transpose(mat2, mat3);

	cv::Mat mat2_(height, width, CV_32FC1, matSrc1.data);
	cv::Mat mat3_;
	cv::transpose(mat2_, mat3_);

	assert(mat3.rows == mat3_.rows && mat3.cols == mat3_.cols && mat3.step == mat3_.step);
	for (int y = 0; y < mat3.rows; y++) {
		const fbc::uchar* p1 = mat3.ptr(y);
		const uchar* p2 = mat3_.ptr(y);

		for (int x = 0; x < mat3.step; x++) {
			assert(p1[x] == p2[x]);
		}
	}

	return 0;
}

GitHubhttps://github.com/fengbingchun/OpenCV_Test

OpenCV代码提取:transpose函数的实现的更多相关文章

  1. OpenCV代码提取:flip函数的实现

    OpenCV中实现图像翻转的函数flip,公式为: 目前fbc_cv库中也实现了flip函数,支持多通道,uchar和float两种数据类型,经测试,与OpenCV3.1结果完全一致. 实现代码fli ...

  2. OpenCV代码提取:dft函数的实现

    The Fourier Transform will decompose an image into its sinus and cosines components. In other words, ...

  3. OpenCV代码提取: threshold函数的实现

    threshold algorithm: The simplest image segmentation method. All thresholding algorithms take a sour ...

  4. OpenCV代码提取:遍历指定目录下指定文件的实现

    前言 OpenCV 3.1之前的版本,在contrib目录下有提供遍历文件的函数,用起来比较方便.但是在最新的OpenCV 3.1版本给去除掉了.为了以后使用方便,这里将OpenCV 2.4.9中相关 ...

  5. OpenCV中的绘图函数-OpenCV步步精深

    OpenCV 中的绘图函数 画线 首先要为画的线创造出环境,就要生成一个空的黑底图像 img=np.zeros((512,512,3), np.uint8) 这是黑色的底,我们的画布,我把窗口名叫做i ...

  6. 基础学习笔记之opencv(24):imwrite函数的使用

    http://www.cnblogs.com/tornadomeet/archive/2012/12/26/2834336.html 前言 OpenCV中保存图片的函数在c++版本中变成了imwrit ...

  7. tf.transpose函数解析

    tf.transpose函数解析 觉得有用的话,欢迎一起讨论相互学习~Follow Me tf.transpose(a, perm = None, name = 'transpose') 解释 将a进 ...

  8. (转)Uri详解之——Uri结构与代码提取

    前言:依然没有前言…… 相关博客:1.<Uri详解之——Uri结构与代码提取>2.<Uri详解之二——通过自定义Uri外部启动APP与Notification启动> 上几篇给大 ...

  9. Uri详解之——Uri结构与代码提取

    目录(?)[+] 前言:依然没有前言…… 相关博客:1.<Uri详解之——Uri结构与代码提取>2.<Uri详解之二——通过自定义Uri外部启动APP与Notification启动& ...

随机推荐

  1. 如何使用Kubernetes的configmap通过环境变量注入到pod里

    在Kubernetes官网里,有这样一篇文章,提到了Kubernetes里的一个最佳实践就是把应用代码同配置信息分开,一种方式就是使用Kubernetes 1.2里引入的configmap概念. ht ...

  2. 初学DLX

    前言 \(DLX\),全称\(Dancing\ Links\ X\),即舞蹈链算法. 这是一个十分高效且实用的算法,它主要用于求出精确覆盖问题的一组解.(貌似重复覆盖问题也可以,但我不会\(2333\ ...

  3. 课堂笔记——while循环

    用 while循环 1.100以内所有数的和 static void Main1(string[] args) //不是自己做的 { //100以内所有数的和 ; ; //初始条件 ) //循环条件 ...

  4. HashMap面试知识点

    HashMap的工作原理是近年来常见的Java面试题. 几乎每个Java程序员都知道HashMap,都知道哪里要用HashMap,知道Hashtable和HashMap之间的区别,那么为何这道面试题如 ...

  5. mobileeye

    if a human can drive a car based on vision alone – so can a computer. 但是目前哪家能做到?

  6. mysql的子查询in()操作及按指定顺序显示

    代码示例: in(逗号分隔开的值列表) 释:是否存在于值列表中 --------------------- 示例: select * from test where id in(3,1,5) orde ...

  7. JS JavaScript事件循环机制

    区分进程和线程 进程是cpu资源分配的最小单位(系统会给它分配内存) 不同的进程之间是可以同学的,如管道.FIFO(命名管道).消息队列 一个进程里有单个或多个线程 浏览器是多进程的,因为系统给它的进 ...

  8. Python学习之路——文件操作

    文件操作分三步:打开文件,读写文件,关闭文件.读取操作时没有给read函数加括号,会出现下面这样的车祸 >>> data = open('/home/supersun/Documen ...

  9. html加载顺序以及影响页面二次渲染额的因素

    浏览器请求发往服务器以后,返回HTML页面,页面内容开始渲染,具体的执行顺序为: 1. 浏览器开始载入html代码,发现<head>标签内有一个<link>标签引用外部CSS文 ...

  10. SpringBoot非官方教程 | 第十四篇:在springboot中用redis实现消息队列

    转载请标明出处: 原文首发于:https://www.fangzhipeng.com/springboot/2017/07/11/springboot14-redis-mq/ 本文出自方志朋的博客 这 ...