BP算法在minist上的简单实现

数据:http://yann.lecun.com/exdb/mnist/

参考:blog,blog2,blog3,tensorflow

推导:http://www.cnblogs.com/yueshangzuo/p/8025157.html

基本实现

import struct
import random
import numpy as np
from math import sqrt class Data:
def __init__(self):
print 'parameter initializing...'
self.num_train= 50000
self.num_confirm=10000
self.num_test= 10000
self.node_in=28*28
self.node_out=10
# need to adjust
#epoch:8 hide_node:39 accuracy:0.9613
#epoch:8 hide_node:44 accuracy:0.9612
#epoch:8 hide_node:48 accuracy:0.9624
#epoch:9 hide_node:48 accuracy:0.9648
#epoch:10 hide_node:200 accuracy:0.9724
self.epoch= 15
self.node_hide= 30
self.study_rate= 0.05
self.error_limit= 1e-2 def read_train_image(self,filename):
print 'reading train-image data...'
binfile=open(filename,'rb')
buffer=binfile.read()
index=0
magic,num,rows,colums = struct.unpack_from('>IIII',buffer,index) #>I:big-endian,unsigned int
index+=struct.calcsize('IIII')
for i in range(self.num_train):
im=struct.unpack_from('784B',buffer,index) #28*28=786,B unsigned char
index+=struct.calcsize('784B')
im=np.array(im)
im=im.reshape(1,784)/255.0 #28*28-->1
self.train_imag_list[i,:]=im
j=0
for i in range(self.num_train,self.num_train+self.num_confirm):
im=struct.unpack_from('784B',buffer,index)
index+=struct.calcsize('784B')
im=np.array(im)
im=im.reshape(1,784)/255.0
self.confirm_imag_list[j,:]=im
j=j+1 def read_train_label(self,filename):
print 'reading train-label data...'
binfile=open(filename,'rb')
buffer=binfile.read()
index=0
magic,num= struct.unpack_from('>II',buffer,index)
index+=struct.calcsize('II')
for i in range(self.num_train):
lb=struct.unpack_from('B',buffer,index)
index+=struct.calcsize('B')
lb=int(lb[0])
self.train_label_list[i,:]=lb
j=0
for i in range(self.num_train,self.num_train+self.num_confirm):
lb=struct.unpack_from('B',buffer,index)
index+=struct.calcsize('B')
lb=int(lb[0])
self.confirm_label_list[j,:]=lb
j=j+1 def read_test_image(self,filename):
print 'reading test-image data...'
binfile=open(filename,'rb')
buffer=binfile.read()
index=0
magic,num,rows,colums = struct.unpack_from('>IIII',buffer,index)
index+=struct.calcsize('IIII') for i in range(self.num_test):
im=struct.unpack_from('784B',buffer,index)
index+=struct.calcsize('784B')
im=np.array(im)
im=im.reshape(1,784)/256.0
self.test_imag_list[i,:]=im def read_test_label(self,filename):
print 'reading test-label data...'
binfile=open(filename,'rb')
buffer=binfile.read()
index=0
magic,num= struct.unpack_from('>II',buffer,index)
index+=struct.calcsize('II') for i in range(self.num_test):
lb=struct.unpack_from('B',buffer,index)
index+=struct.calcsize('B')
lb=int(lb[0])
self.test_label_list[i,:]=lb def init_network(self):
print 'network initializing...'
self.train_imag_list=np.zeros((self.num_train,self.node_in))
self.train_label_list=np.zeros((self.num_train,1))
self.confirm_imag_list=np.zeros((self.num_confirm,self.node_in))
self.confirm_label_list=np.zeros((self.num_confirm,1))
self.test_imag_list=np.zeros((self.num_test,self.node_in))
self.test_label_list=np.zeros((self.num_test,1)) self.read_train_image('train-images.idx3-ubyte')
self.read_train_label('train-labels.idx1-ubyte')
self.read_test_image('t10k-images.idx3-ubyte')
self.read_test_label('t10k-labels.idx1-ubyte') self.wjk=(np.random.rand(self.node_hide,self.node_out)-0.5)*2/sqrt(self.node_hide)
self.wj0=(np.random.rand(self.node_out)-0.5)*2/sqrt(self.node_hide)
self.wij=(np.random.rand(self.node_in,self.node_hide)-0.5)*2/sqrt(self.node_in)
self.wi0=(np.random.rand(self.node_hide)-0.5)*2/sqrt(self.node_in) def sigmode(self,x):
return 1.0/(1.0+np.exp(-x)) def calc_yjzk(self,sample_i,imag_list):
self.netj=np.dot(imag_list[sample_i],self.wij)+self.wi0
self.yj=self.sigmode(self.netj) self.netk=np.dot(self.yj,self.wjk)+self.wj0
self.zk=self.sigmode(self.netk) def calc_error(self):
ans=0.0
for sample_i in range(self.num_confirm):
self.calc_yjzk(sample_i,self.confirm_imag_list)
label_tmp=np.zeros(self.node_out)
label_tmp[int(self.confirm_label_list[sample_i])]=1
ans=ans+sum(np.square(label_tmp-self.zk)/2.0)
# print ans
return ans def training(self):
print 'training model...'
for epoch_i in range(self.epoch):
for circle in range(self.num_train):
sample_i=np.random.randint(0,self.num_train)
#print 'debug epoch:%d sample:%d' % (epoch_i,sample_i)
#calc error
#error_before=self.calc_error()
self.calc_yjzk(sample_i,self.train_imag_list)
#update weight hide->out
tmp_label=np.zeros(self.node_out)
tmp_label[int(self.train_label_list[sample_i])]=1
delta_k=(self.zk-tmp_label)*self.zk*(1-self.zk)
self.yj.shape=(self.node_hide,1)
delta_k.shape=(1,self.node_out)
self.wjk=self.wjk-self.study_rate*np.dot(self.yj,delta_k)
#update weight in->hide
self.yj=self.yj.T
delta_j=np.dot(delta_k,self.wjk.T)*self.yj*(1-self.yj)
tmp_imag=self.train_imag_list[sample_i]
tmp_imag.shape=(self.node_in,1)
self.wij=self.wij-self.study_rate*np.dot(tmp_imag,delta_j)
# calc error
# self.calc_yjzk(sample_i,self.train_imag_list)
# error_delta=error_before-self.calc_error()
# if np.abs(error_delta)<self.error_limit:
# print 'debug break'
# print error_delta
# break
#print 'error %d %.2f' % (epoch_i,self.calc_error()) def testing(self):
print 'testing...'
num_right=0.0
for sample_i in range(self.num_test):
self.calc_yjzk(sample_i,self.test_imag_list)
ans=self.zk.argmax()
if ans==int(self.test_label_list[sample_i]):
num_right=num_right+1
self.accuracy=num_right/self.num_test
print 'accuracy: %.4f' % (self.accuracy*100) +'%'
def main():
data=Data()
data.init_network()
data.training()
data.testing() if __name__=='__main__':
main()

注意

  1. 注意数据的编码格式,在数据来源网站最底下有指出,上面还展示了一些机器学习的经典模型在minist数据集上的错误率可供参考
  2. 权值合理的初始化,及迭代次数,学习速率,隐层节点数的设置可参考经验值
  3. 数据的归一化(防止sigmode函数溢出)
  4. 矩阵乘法时注意行列条件的满足
  5. 合理的epoch(即迭代次数,学习速率小的时候可以大一点的迭代次数,学习速率大的时候迭代次数取较小值)
  6. 确认合适的迭代次数后可去掉确认集,用全部的样本数据训练模型
  7. 隐层节点基本上越多越好

调参脚本

import ann

f=open('best_parameter', 'a+')
for e in range(10,40):
for node in range(10,50):
data=ann.Data()
data.node_hide=node
data.epoch=e
data.init_network()
data.training()
data.testing()
ans='circling to get best parameter----->epoch:%d hide_node:%d accuracy:%.4f\n' % (e,node,data.accuracy)
print ans
f.write(ans)
f.close()

可迭代计算迭代次数和隐层节点的数目对准确率的影响,大致规律是在学习速率0.05时,迭代次数在10-15为宜,隐层节点30以上

一些试验的结果如下:

circling to get best parameter----->epoch:14 hide_node:43 accuracy:0.9656
circling to get best parameter----->epoch:14 hide_node:44 accuracy:0.9651
circling to get best parameter----->epoch:14 hide_node:45 accuracy:0.9638
circling to get best parameter----->epoch:14 hide_node:46 accuracy:0.9641
circling to get best parameter----->epoch:14 hide_node:47 accuracy:0.9649
circling to get best parameter----->epoch:14 hide_node:48 accuracy:0.9651
circling to get best parameter----->epoch:14 hide_node:49 accuracy:0.9671
circling to get best parameter----->epoch:15 hide_node:46 accuracy:0.9661
circling to get best parameter----->epoch:15 hide_node:47 accuracy:0.9660
circling to get best parameter----->epoch:15 hide_node:48 accuracy:0.9650
circling to get best parameter----->epoch:15 hide_node:49 accuracy:0.9655
circling to get best parameter----->epoch:10 hide_node:100 accuracy:0.9685
circling to get best parameter----->epoch:10 hide_node:200 accuracy:0.9724
circling to get best parameter----->epoch:10 hide_node:300 accuracy:0.9718
circling to get best parameter----->epoch:10 hide_node:1000 accuracy:0.9568

Tensorflow实现

import argparse

# Import data
from tensorflow.examples.tutorials.mnist import input_data import tensorflow as tf FLAGS = None def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial) def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial) def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME') def add_layer(inputs, in_size, out_size, activation_function=None):
# add a fully collected layer
Weights = weight_variable([in_size, out_size])
biases = bias_variable([out_size])
Wx_plus_b = tf.matmul(inputs, Weights) + biases
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
return outputs def main(_):
mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True) # reshape the input to have batch size, width, height, channel size
x = tf.placeholder(tf.float32, [None, 784])
x_image = tf.reshape(x, [-1, 28, 28, 1]) # 5*5 patch size, input channel is 1, output channel is 32
W_conv1 = weight_variable([5, 5, 1, 32]) # bias, same size with the output channel
b_conv1 = bias_variable([32]) # the first convolutional layer with a max pooling layer
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1) #after pooling, we have a tensor with shape[-1, 14, 14, 32] # the weights and bias for the second layer, we will get 64 channels
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64]) # the second convolutional layer with a max pooling layer
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2) # after pooling, we have a tensor with shape[-1, 7, 7, 64] # add a fully connected layer with 1024 neurons and use relu as the activation function
h_pool2_flat = tf.reshape(h_pool2, [-1,7*7*64])
h_fc1 = add_layer(h_pool2_flat, 7*7*64, 1024, tf.nn.relu) # we add dropout for the fully connected layer to avoid overfitting
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) # finally, the output layer
y_conv = add_layer(h_fc1_drop, 1024, 10, None) # loss function and so on
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_sum(tf.nn.softmax_cross_entropy_with_logits(logits=y_conv, labels=y_))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # start training, and we test our model every 100 steps
sess = tf.InteractiveSession()
sess.run(tf.initialize_all_variables())
for i in range(10000):
batch = mnist.train.next_batch(100)
if i % 100 == 0:
train_accuracy = accuracy.eval(feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0})
test_accuracy = accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0})
print("step %d, training accuracy %g, test accuracy %g" % (i, train_accuracy, test_accuracy)) train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5}) if __name__ == '__main__':
parser = argparse.ArgumentParser() # modify the dir path to your own dataset
parser.add_argument('--data_dir', type=str, default='/tmp/mnist',
help='Directory for storing data')
FLAGS = parser.parse_args()
tf.app.run()

需要配置tensorflow和python3.+的运行环境

结果如下

step 0, training accuracy 0.06, test accuracy 0.0892
step 100, training accuracy 0.86, test accuracy 0.8692
step 200, training accuracy 0.97, test accuracy 0.9207
step 300, training accuracy 0.92, test accuracy 0.9403
step 400, training accuracy 0.95, test accuracy 0.9485
step 500, training accuracy 0.91, test accuracy 0.9522
step 600, training accuracy 0.97, test accuracy 0.9565
step 700, training accuracy 0.97, test accuracy 0.9622
step 800, training accuracy 0.96, test accuracy 0.9638
step 900, training accuracy 0.98, test accuracy 0.9687
step 1000, training accuracy 0.97, test accuracy 0.9703

有任何环境配置的问题请联系,欢迎指出错误

BP算法在minist数据集上的简单实现的更多相关文章

  1. (2) 用DPM(Deformable Part Model,voc-release4.01)算法在INRIA数据集上训练自己的人体检測模型

    步骤一,首先要使voc-release4.01目标检測部分的代码在windows系统下跑起来: 參考在window下执行DPM(deformable part models) -(检測demo部分) ...

  2. 如何高效的通过BP算法来训练CNN

    < Neural Networks Tricks of the Trade.2nd>这本书是收录了1998-2012年在NN上面的一些技巧.原理.算法性文章,对于初学者或者是正在学习NN的 ...

  3. 一文彻底搞懂BP算法:原理推导+数据演示+项目实战(上篇)

    欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 反向传播算法(Backpropagation Algorithm, ...

  4. Backpropagation反向传播算法(BP算法)

    1.Summary: Apply the chain rule to compute the gradient of the loss function with respect to the inp ...

  5. 在Titanic数据集上应用AdaBoost元算法

    一.AdaBoost 元算法的基本原理 AdaBoost是adaptive boosting的缩写,就是自适应boosting.元算法是对于其他算法进行组合的一种方式. 而boosting是在从原始数 ...

  6. TersorflowTutorial_MNIST数据集上简单CNN实现

    MNIST数据集上简单CNN实现 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 Tensorflow机器学习实战指南 源代码请点击下方链接欢迎加星 Tesorflow实现基于MNI ...

  7. MNIST数据集上卷积神经网络的简单实现(使用PyTorch)

    设计的CNN模型包括一个输入层,输入的是MNIST数据集中28*28*1的灰度图 两个卷积层, 第一层卷积层使用6个3*3的kernel进行filter,步长为1,填充1.这样得到的尺寸是(28+1* ...

  8. DNN的BP算法Python简单实现

    BP算法是神经网络的基础,也是最重要的部分.由于误差反向传播的过程中,可能会出现梯度消失或者爆炸,所以需要调整损失函数.在LSTM中,通过sigmoid来实现三个门来解决记忆问题,用tensorflo ...

  9. 史上最简单的排序算法?看起来却满是bug

    大家好,我是雨乐. 今天在搜论文的时候,偶然发现一篇文章,名为<Is this the simplest (and most surprising) sorting algorithm ever ...

随机推荐

  1. Report: Disappearing Wetlands Put Planet Life at Risk

    A new report warns that wetlands are disappearing three times faster than the world’s forests, with ...

  2. div垂直水平居中的四种方法总结

    5.利用弹性布局 与 margin: <style> .container{ height: 600px; width: 600px; border:1px solid black; di ...

  3. LOJ2823 「BalticOI 2014 Day 1」三个朋友

    题意 给定一个字符串 S,先将字符串 S 复制一次(变成双倍快乐),得到字符串 T,然后在 T 中插入一个字符,得到字符串 U. 给出字符串 U,重新构造出字符串 S. 所有字符串只包含大写英文字母. ...

  4. ES6常用知识总结(20%的知识占80%的份额)

    一.变量和常量 var的缺点:(1)var可以多次声明同一个变量:   (2)var会造成变量提升 (function rr() { if(true) { var a = 666; } console ...

  5. C#反射 -- 基础

    两个现实中的例子:1.B超:大家体检的时候大概都做过B超吧,B超可以透过肚皮探测到你内脏的生理情况.这是如何做到的呢?B超是B型超声波,它可以透过肚皮通过向你体内发射B型超声波,当超声波遇到内脏壁的时 ...

  6. linux 本地账号密码无法登陆(shell可以登录),一直返回 登陆的login界面

    今天我在我虚拟机测试的时候遇到了一个问题.登陆centos一直是返回login,账号和密码没错,我也换了两个用户. 1.问题描述 我正常的输入用户名和密码 错误提示截图:返回登陆界面,我重新试了另外的 ...

  7. spring的<array>标签错误

    1,复习了一下spring xml的配置 单个默认命名空间 我们看到,在配置文件中,beans,bean等元素我们是没有使用命名空间前缀的.重复限定一个要在命名空间中使用的元素或属性可能会非常麻烦.这 ...

  8. Ambari的API调用

    GET api/v1/clusters/HDP/configurations可以获得所有的配置信息(例如,http://hdp0:8080/api/v1/clusters/HDP/configurat ...

  9. npm包的发布

    假设该待发布包在你本地的项目为 project1 包的本地安装测试 在发布之前往往希望在本地进行安装测试.那么需要一个其他的项目来本地安装待发布项目. 假设该其他项目为project2.假设proje ...

  10. Ubuntu15.10下Hadoop2.6.0伪分布式环境安装配置及Hadoop Streaming的体验

    Ubuntu用的是Ubuntu15.10Beta2版本,正式的版本好像要到这个月的22号才发布.参考的资料主要是http://www.powerxing.com/install-hadoop-clus ...