BP算法在minist数据集上的简单实现
BP算法在minist上的简单实现
数据:http://yann.lecun.com/exdb/mnist/
参考:blog,blog2,blog3,tensorflow
基本实现
import struct
import random
import numpy as np
from math import sqrt
class Data:
def __init__(self):
print 'parameter initializing...'
self.num_train= 50000
self.num_confirm=10000
self.num_test= 10000
self.node_in=28*28
self.node_out=10
# need to adjust
#epoch:8 hide_node:39 accuracy:0.9613
#epoch:8 hide_node:44 accuracy:0.9612
#epoch:8 hide_node:48 accuracy:0.9624
#epoch:9 hide_node:48 accuracy:0.9648
#epoch:10 hide_node:200 accuracy:0.9724
self.epoch= 15
self.node_hide= 30
self.study_rate= 0.05
self.error_limit= 1e-2
def read_train_image(self,filename):
print 'reading train-image data...'
binfile=open(filename,'rb')
buffer=binfile.read()
index=0
magic,num,rows,colums = struct.unpack_from('>IIII',buffer,index) #>I:big-endian,unsigned int
index+=struct.calcsize('IIII')
for i in range(self.num_train):
im=struct.unpack_from('784B',buffer,index) #28*28=786,B unsigned char
index+=struct.calcsize('784B')
im=np.array(im)
im=im.reshape(1,784)/255.0 #28*28-->1
self.train_imag_list[i,:]=im
j=0
for i in range(self.num_train,self.num_train+self.num_confirm):
im=struct.unpack_from('784B',buffer,index)
index+=struct.calcsize('784B')
im=np.array(im)
im=im.reshape(1,784)/255.0
self.confirm_imag_list[j,:]=im
j=j+1
def read_train_label(self,filename):
print 'reading train-label data...'
binfile=open(filename,'rb')
buffer=binfile.read()
index=0
magic,num= struct.unpack_from('>II',buffer,index)
index+=struct.calcsize('II')
for i in range(self.num_train):
lb=struct.unpack_from('B',buffer,index)
index+=struct.calcsize('B')
lb=int(lb[0])
self.train_label_list[i,:]=lb
j=0
for i in range(self.num_train,self.num_train+self.num_confirm):
lb=struct.unpack_from('B',buffer,index)
index+=struct.calcsize('B')
lb=int(lb[0])
self.confirm_label_list[j,:]=lb
j=j+1
def read_test_image(self,filename):
print 'reading test-image data...'
binfile=open(filename,'rb')
buffer=binfile.read()
index=0
magic,num,rows,colums = struct.unpack_from('>IIII',buffer,index)
index+=struct.calcsize('IIII')
for i in range(self.num_test):
im=struct.unpack_from('784B',buffer,index)
index+=struct.calcsize('784B')
im=np.array(im)
im=im.reshape(1,784)/256.0
self.test_imag_list[i,:]=im
def read_test_label(self,filename):
print 'reading test-label data...'
binfile=open(filename,'rb')
buffer=binfile.read()
index=0
magic,num= struct.unpack_from('>II',buffer,index)
index+=struct.calcsize('II')
for i in range(self.num_test):
lb=struct.unpack_from('B',buffer,index)
index+=struct.calcsize('B')
lb=int(lb[0])
self.test_label_list[i,:]=lb
def init_network(self):
print 'network initializing...'
self.train_imag_list=np.zeros((self.num_train,self.node_in))
self.train_label_list=np.zeros((self.num_train,1))
self.confirm_imag_list=np.zeros((self.num_confirm,self.node_in))
self.confirm_label_list=np.zeros((self.num_confirm,1))
self.test_imag_list=np.zeros((self.num_test,self.node_in))
self.test_label_list=np.zeros((self.num_test,1))
self.read_train_image('train-images.idx3-ubyte')
self.read_train_label('train-labels.idx1-ubyte')
self.read_test_image('t10k-images.idx3-ubyte')
self.read_test_label('t10k-labels.idx1-ubyte')
self.wjk=(np.random.rand(self.node_hide,self.node_out)-0.5)*2/sqrt(self.node_hide)
self.wj0=(np.random.rand(self.node_out)-0.5)*2/sqrt(self.node_hide)
self.wij=(np.random.rand(self.node_in,self.node_hide)-0.5)*2/sqrt(self.node_in)
self.wi0=(np.random.rand(self.node_hide)-0.5)*2/sqrt(self.node_in)
def sigmode(self,x):
return 1.0/(1.0+np.exp(-x))
def calc_yjzk(self,sample_i,imag_list):
self.netj=np.dot(imag_list[sample_i],self.wij)+self.wi0
self.yj=self.sigmode(self.netj)
self.netk=np.dot(self.yj,self.wjk)+self.wj0
self.zk=self.sigmode(self.netk)
def calc_error(self):
ans=0.0
for sample_i in range(self.num_confirm):
self.calc_yjzk(sample_i,self.confirm_imag_list)
label_tmp=np.zeros(self.node_out)
label_tmp[int(self.confirm_label_list[sample_i])]=1
ans=ans+sum(np.square(label_tmp-self.zk)/2.0)
# print ans
return ans
def training(self):
print 'training model...'
for epoch_i in range(self.epoch):
for circle in range(self.num_train):
sample_i=np.random.randint(0,self.num_train)
#print 'debug epoch:%d sample:%d' % (epoch_i,sample_i)
#calc error
#error_before=self.calc_error()
self.calc_yjzk(sample_i,self.train_imag_list)
#update weight hide->out
tmp_label=np.zeros(self.node_out)
tmp_label[int(self.train_label_list[sample_i])]=1
delta_k=(self.zk-tmp_label)*self.zk*(1-self.zk)
self.yj.shape=(self.node_hide,1)
delta_k.shape=(1,self.node_out)
self.wjk=self.wjk-self.study_rate*np.dot(self.yj,delta_k)
#update weight in->hide
self.yj=self.yj.T
delta_j=np.dot(delta_k,self.wjk.T)*self.yj*(1-self.yj)
tmp_imag=self.train_imag_list[sample_i]
tmp_imag.shape=(self.node_in,1)
self.wij=self.wij-self.study_rate*np.dot(tmp_imag,delta_j)
# calc error
# self.calc_yjzk(sample_i,self.train_imag_list)
# error_delta=error_before-self.calc_error()
# if np.abs(error_delta)<self.error_limit:
# print 'debug break'
# print error_delta
# break
#print 'error %d %.2f' % (epoch_i,self.calc_error())
def testing(self):
print 'testing...'
num_right=0.0
for sample_i in range(self.num_test):
self.calc_yjzk(sample_i,self.test_imag_list)
ans=self.zk.argmax()
if ans==int(self.test_label_list[sample_i]):
num_right=num_right+1
self.accuracy=num_right/self.num_test
print 'accuracy: %.4f' % (self.accuracy*100) +'%'
def main():
data=Data()
data.init_network()
data.training()
data.testing()
if __name__=='__main__':
main()
注意
- 注意数据的编码格式,在数据来源网站最底下有指出,上面还展示了一些机器学习的经典模型在minist数据集上的错误率可供参考
- 权值合理的初始化,及迭代次数,学习速率,隐层节点数的设置可参考经验值
- 数据的归一化(防止sigmode函数溢出)
- 矩阵乘法时注意行列条件的满足
- 合理的epoch(即迭代次数,学习速率小的时候可以大一点的迭代次数,学习速率大的时候迭代次数取较小值)
- 确认合适的迭代次数后可去掉确认集,用全部的样本数据训练模型
- 隐层节点基本上越多越好
调参脚本
import ann
f=open('best_parameter', 'a+')
for e in range(10,40):
for node in range(10,50):
data=ann.Data()
data.node_hide=node
data.epoch=e
data.init_network()
data.training()
data.testing()
ans='circling to get best parameter----->epoch:%d hide_node:%d accuracy:%.4f\n' % (e,node,data.accuracy)
print ans
f.write(ans)
f.close()
可迭代计算迭代次数和隐层节点的数目对准确率的影响,大致规律是在学习速率0.05时,迭代次数在10-15为宜,隐层节点30以上
一些试验的结果如下:
circling to get best parameter----->epoch:14 hide_node:43 accuracy:0.9656
circling to get best parameter----->epoch:14 hide_node:44 accuracy:0.9651
circling to get best parameter----->epoch:14 hide_node:45 accuracy:0.9638
circling to get best parameter----->epoch:14 hide_node:46 accuracy:0.9641
circling to get best parameter----->epoch:14 hide_node:47 accuracy:0.9649
circling to get best parameter----->epoch:14 hide_node:48 accuracy:0.9651
circling to get best parameter----->epoch:14 hide_node:49 accuracy:0.9671
circling to get best parameter----->epoch:15 hide_node:46 accuracy:0.9661
circling to get best parameter----->epoch:15 hide_node:47 accuracy:0.9660
circling to get best parameter----->epoch:15 hide_node:48 accuracy:0.9650
circling to get best parameter----->epoch:15 hide_node:49 accuracy:0.9655
circling to get best parameter----->epoch:10 hide_node:100 accuracy:0.9685
circling to get best parameter----->epoch:10 hide_node:200 accuracy:0.9724
circling to get best parameter----->epoch:10 hide_node:300 accuracy:0.9718
circling to get best parameter----->epoch:10 hide_node:1000 accuracy:0.9568
Tensorflow实现
import argparse
# Import data
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
FLAGS = None
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')
def add_layer(inputs, in_size, out_size, activation_function=None):
# add a fully collected layer
Weights = weight_variable([in_size, out_size])
biases = bias_variable([out_size])
Wx_plus_b = tf.matmul(inputs, Weights) + biases
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
return outputs
def main(_):
mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True)
# reshape the input to have batch size, width, height, channel size
x = tf.placeholder(tf.float32, [None, 784])
x_image = tf.reshape(x, [-1, 28, 28, 1])
# 5*5 patch size, input channel is 1, output channel is 32
W_conv1 = weight_variable([5, 5, 1, 32])
# bias, same size with the output channel
b_conv1 = bias_variable([32])
# the first convolutional layer with a max pooling layer
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
#after pooling, we have a tensor with shape[-1, 14, 14, 32]
# the weights and bias for the second layer, we will get 64 channels
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
# the second convolutional layer with a max pooling layer
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
# after pooling, we have a tensor with shape[-1, 7, 7, 64]
# add a fully connected layer with 1024 neurons and use relu as the activation function
h_pool2_flat = tf.reshape(h_pool2, [-1,7*7*64])
h_fc1 = add_layer(h_pool2_flat, 7*7*64, 1024, tf.nn.relu)
# we add dropout for the fully connected layer to avoid overfitting
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
# finally, the output layer
y_conv = add_layer(h_fc1_drop, 1024, 10, None)
# loss function and so on
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_sum(tf.nn.softmax_cross_entropy_with_logits(logits=y_conv, labels=y_))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
# start training, and we test our model every 100 steps
sess = tf.InteractiveSession()
sess.run(tf.initialize_all_variables())
for i in range(10000):
batch = mnist.train.next_batch(100)
if i % 100 == 0:
train_accuracy = accuracy.eval(feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0})
test_accuracy = accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0})
print("step %d, training accuracy %g, test accuracy %g" % (i, train_accuracy, test_accuracy))
train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# modify the dir path to your own dataset
parser.add_argument('--data_dir', type=str, default='/tmp/mnist',
help='Directory for storing data')
FLAGS = parser.parse_args()
tf.app.run()
需要配置tensorflow和python3.+的运行环境
结果如下
step 0, training accuracy 0.06, test accuracy 0.0892
step 100, training accuracy 0.86, test accuracy 0.8692
step 200, training accuracy 0.97, test accuracy 0.9207
step 300, training accuracy 0.92, test accuracy 0.9403
step 400, training accuracy 0.95, test accuracy 0.9485
step 500, training accuracy 0.91, test accuracy 0.9522
step 600, training accuracy 0.97, test accuracy 0.9565
step 700, training accuracy 0.97, test accuracy 0.9622
step 800, training accuracy 0.96, test accuracy 0.9638
step 900, training accuracy 0.98, test accuracy 0.9687
step 1000, training accuracy 0.97, test accuracy 0.9703
有任何环境配置的问题请联系,欢迎指出错误
BP算法在minist数据集上的简单实现的更多相关文章
- (2) 用DPM(Deformable Part Model,voc-release4.01)算法在INRIA数据集上训练自己的人体检測模型
步骤一,首先要使voc-release4.01目标检測部分的代码在windows系统下跑起来: 參考在window下执行DPM(deformable part models) -(检測demo部分) ...
- 如何高效的通过BP算法来训练CNN
< Neural Networks Tricks of the Trade.2nd>这本书是收录了1998-2012年在NN上面的一些技巧.原理.算法性文章,对于初学者或者是正在学习NN的 ...
- 一文彻底搞懂BP算法:原理推导+数据演示+项目实战(上篇)
欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 反向传播算法(Backpropagation Algorithm, ...
- Backpropagation反向传播算法(BP算法)
1.Summary: Apply the chain rule to compute the gradient of the loss function with respect to the inp ...
- 在Titanic数据集上应用AdaBoost元算法
一.AdaBoost 元算法的基本原理 AdaBoost是adaptive boosting的缩写,就是自适应boosting.元算法是对于其他算法进行组合的一种方式. 而boosting是在从原始数 ...
- TersorflowTutorial_MNIST数据集上简单CNN实现
MNIST数据集上简单CNN实现 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 Tensorflow机器学习实战指南 源代码请点击下方链接欢迎加星 Tesorflow实现基于MNI ...
- MNIST数据集上卷积神经网络的简单实现(使用PyTorch)
设计的CNN模型包括一个输入层,输入的是MNIST数据集中28*28*1的灰度图 两个卷积层, 第一层卷积层使用6个3*3的kernel进行filter,步长为1,填充1.这样得到的尺寸是(28+1* ...
- DNN的BP算法Python简单实现
BP算法是神经网络的基础,也是最重要的部分.由于误差反向传播的过程中,可能会出现梯度消失或者爆炸,所以需要调整损失函数.在LSTM中,通过sigmoid来实现三个门来解决记忆问题,用tensorflo ...
- 史上最简单的排序算法?看起来却满是bug
大家好,我是雨乐. 今天在搜论文的时候,偶然发现一篇文章,名为<Is this the simplest (and most surprising) sorting algorithm ever ...
随机推荐
- Android 开发最牛的图片轮播控件,基本什么都包含了。
Android图片轮播控件 源码下载地址: Android 图片轮播 现在的绝大数app都有banner界面,实现循环播放多个广告图片和手动滑动循环等功能.因为ViewPager并不支持循环翻页, ...
- dojo chart详解
Dojo提供了一套很完善的统计图(Chart)接口,在dojox/charting下面,可以支持很多种类型的. .简介 Dojo统计图提供快速的.简单的接口实现美观的.交互性强的web统计图表的实现. ...
- F. Coprime Subsequences
题目链接: F. Coprime Subsequences time limit per test 2 seconds memory limit per test 256 megabytes inpu ...
- 正则,re模块
一.正则表达式(精准匹配) 匹配字符串内容的一种规则 二.字符组 在同一个位置可能出现的各种字符组成了一个字符组,在正则表达式中用[]表示 常见字符组格式如下:[0123456789],[0-9],[ ...
- squid对http range的处理以及range_offset_limit
range_offset_limit A range request comes from a client that wants only some subset of an HTTP respon ...
- 核PCA投影平面公式推导
样本方差推导 样本方差公式\[S = \frac{1}{n-1}\sum_{i=1}^n(x_i-\mu_i)^2\] 扩展开来得到\[S = \frac{1}{n-1}[(X-\frac{1}{n} ...
- 如何手玩5h uoj215 果冻运输得到 AC
最近在大力练习提答颓提答,听说果冻运输很好玩就来试试. 然后玩的停不下来 QAQ ... 于是开一篇博客写一下每个点的解法.(一个个手玩出来的..) 首先我们每次都算什么下一步完后会发生什么在大脑中演 ...
- bisect模块用于插入
参考链接: chttp://www.cnblogs.com/skydesign/archive/2011/09/02/2163592.html水
- Linux cc与gcc
三个源文件:main.c sum.c show.c /* main.c */ extern int sum(int m, int n); extern void show(int data); int ...
- erlang配置三方库
暴力的: 直接下载解压以后放到erlang的lib目录,比如/usr/local/Cellar/erlang/17.3/lib/erlang/lib 和谐的: 在用户名下建立.erlang文件 在里面 ...