增强学习--Q-leraning
import numpy as np
import random
from environment import Env
from collections import defaultdict class QLearningAgent:
def __init__(self, actions):
# actions = [0, 1, 2, 3]
self.actions = actions
self.learning_rate = 0.01
self.discount_factor = 0.9
self.epsilon = 0.1
self.q_table = defaultdict(lambda: [0.0, 0.0, 0.0, 0.0])#待更新q表 # update q function with sample <s, a, r, s'>
def learn(self, state, action, reward, next_state):
current_q = self.q_table[state][action]
# using Bellman Optimality Equation to update q function
new_q = reward + self.discount_factor * max(self.q_table[next_state])
self.q_table[state][action] += self.learning_rate * (new_q - current_q)#更新公式,off-policy # get action for the state according to the q function table
# agent pick action of epsilon-greedy policy
def get_action(self, state):
#epsilon-greedy policy
if np.random.rand() < self.epsilon:
# take random action
action = np.random.choice(self.actions)
else:
# take action according to the q function table
state_action = self.q_table[state]
action = self.arg_max(state_action)
return action @staticmethod
def arg_max(state_action):
max_index_list = []
max_value = state_action[0]
for index, value in enumerate(state_action):
if value > max_value:
max_index_list.clear()
max_value = value
max_index_list.append(index)
elif value == max_value:
max_index_list.append(index)
return random.choice(max_index_list) if __name__ == "__main__":
env = Env()
agent = QLearningAgent(actions=list(range(env.n_actions))) for episode in range(1000):
state = env.reset() while True:
env.render() # take action and proceed one step in the environment
action = agent.get_action(str(state))
next_state, reward, done = env.step(action) # with sample <s,a,r,s'>, agent learns new q function
agent.learn(str(state), action, reward, str(next_state)) state = next_state
env.print_value_all(agent.q_table) # if episode ends, then break
if done:
break
增强学习--Q-leraning的更多相关文章
- 马里奥AI实现方式探索 ——神经网络+增强学习
[TOC] 马里奥AI实现方式探索 --神经网络+增强学习 儿时我们都曾有过一个经典游戏的体验,就是马里奥(顶蘑菇^v^),这次里约奥运会闭幕式,日本作为2020年东京奥运会的东道主,安倍最后也已经典 ...
- 增强学习(三)----- MDP的动态规划解法
上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...
- 增强学习(四) ----- 蒙特卡罗方法(Monte Carlo Methods)
1. 蒙特卡罗方法的基本思想 蒙特卡罗方法又叫统计模拟方法,它使用随机数(或伪随机数)来解决计算的问题,是一类重要的数值计算方法.该方法的名字来源于世界著名的赌城蒙特卡罗,而蒙特卡罗方法正是以概率为基 ...
- 增强学习(Reinforcement Learning and Control)
增强学习(Reinforcement Learning and Control) [pdf版本]增强学习.pdf 在之前的讨论中,我们总是给定一个样本x,然后给或者不给label y.之后对样本进行 ...
- 增强学习 | Q-Learning
"价值不是由一次成功决定的,而是在长期的进取中体现" 上文介绍了描述能力更强的多臂赌博机模型,即通过多台机器的方式对环境变量建模,选择动作策略时考虑时序累积奖赏的影响.虽然多臂赌博 ...
- 常用增强学习实验环境 II (ViZDoom, Roboschool, TensorFlow Agents, ELF, Coach等) (转载)
原文链接:http://blog.csdn.net/jinzhuojun/article/details/78508203 前段时间Nature上发表的升级版Alpha Go - AlphaGo Ze ...
- 增强学习训练AI玩游戏
1.游戏简介 符号A为 AI Agent. 符号@为金币,AI Agent需要尽可能的接取. 符号* 为炸弹,AI Agent需要尽可能的躲避. 游戏下方一组数字含义如下: Bomb hit: 代表目 ...
- 【读书笔记】2_增强学习中的Q-Learning
本文为Thomas Simonini增强学习系列文章笔记或读后感,原文可以直接跳转到medium系列文章. 主要概念为: Q-Learning,探讨其概念以及用Numpy实现 我们可以将二维游戏想象成 ...
- 转:增强学习(二)----- 马尔可夫决策过程MDP
1. 马尔可夫模型的几类子模型 大家应该还记得马尔科夫链(Markov Chain),了解机器学习的也都知道隐马尔可夫模型(Hidden Markov Model,HMM).它们具有的一个共同性质就是 ...
- Multi-armed Bandit Problem与增强学习的联系
选自<Reinforcement Learning: An Introduction>, version 2, 2016, Chapter2 https://webdocs.cs.ualb ...
随机推荐
- GUI自动化模块化实现方式
效率为王:脚本与数据的解耦 + Page Object模型 1.数据驱动:实现了“测试脚本和数据的解耦”,数据驱动测试的数据文件中不仅可以包含测试输入数据,还可以包含测试验证结果数据,甚至可以包含测试 ...
- [ Linux 命令 ] grep
一.grep是什么? Linux grep命令是用于查找文件里符合条件行的shell命令. 二.为什么要使用grep? 在查找文件内容时候,通过使用grep指定条件,可以快速定位到文件里字符串所在的行 ...
- [ 总结 ] nginx 负载均衡 及 缓存
操作系统:centos6.4 x64 前端使用nginx做反向代理,后端服务器为:apache + php + mysql 1. nginx负载均衡. nginx编译安装(编译安装前面的文章已经写过) ...
- 使用System.getProperty("line.separator")时没有换行问题解决
项目中要实现替换模版txt文本里面的内容,然后生成新的文档,其中先把模版文本的内容通过创建的 BufferedReader bufReader 使用 readLine() 来一行一行读取,所以在完成替 ...
- OpenCV 3.0中IplImage* 转cv::Mat
在OpenCV 2.0中使用: IplImage * ipl1, *ipl2; // ... const cv::Mat m = cv::Mat(ipl,false); cv::Mat m2 = ip ...
- window下golang包管理glide使用说明
golang是一门简洁高效的开发 语言,但是包管理一直是一个痛点,如图 : 很多开源项目特别是github.com中的大量应用golang.org和google.golang.org中的源码,且由于被 ...
- KVM的qemu-kvm使用
KVM: kvm,x86支持硬件辅助虚拟化技术(hvm) grep -E "(vmx|svm)" /proc/cpuinfo [root@dmsag ~]# ll /dev/kvm ...
- 使用bottle进行web开发(4):HTTPError
from bottle import error @error(404) def error404(error): return 'Nothing here, sorry' 上述代码,是对404的定义 ...
- <div>之定位
在使用盒子模型的过程中,如何放置各种类型的“盒子”,就存在定位.浮动等问题.下面就日常运用过程中出现过的情况总结如下(陆续加入中....) 一.图片直接做<div>的背景 在<div ...
- 10、Django实战第10天:找回密码
今天完成的功能是:用户忘记密码后,通过注册邮箱重置密码... 首先还是把前端页面准备好,把forgetpwd.html复制到templates目录下 编辑users.views.py,创建一个忘记密码 ...