[CF930E]/[CF944G]Coins Exhibition

题目地址:

CF930E/CF944G

博客地址:

[CF930E]/[CF944G]Coins Exhibition - skylee

题目大意:

一个长度为\(k(k\le10^9)\)的\(01\)串,给出\(n+m(n,m\le10^5)\)个约束条件,其中\(n\)条描述区间\([l_i,r_i]\)至少有一个\(0\),其中\(m\)条描述区间\([l_i,r_i]\)至少有一个\(1\)。求合法的\(01\)串数量。

思路:

显然直接考虑所有的\(k\)位,就算\(\mathcal O(k)\)的线性算法也会超时,因此对于所有的\(l_i-1,r_i\)以及\(0,k\)离散化以后考虑这些关键点即可。

设关键点有\(lim\)个,对所有关键点排序,\(tmp[i]\)为\(i\)离散化前对应的数。对所有关键点排序,考虑动态规划,设\(f[i][j\in\{0,1,2\}]\)表示从后往前考虑第\(i\sim lim\)个关键点。若\(j\in\{0,1\}\),则\(f[i][j]\)表示\(tmp[i]\sim tmp[i+1]\)中含有\(j\)的方案数后缀和。若\(j=2\),则\(f[i][j]\)表示最后一段同时有\(0\)和\(1\)的方案数。用\(min[j\in\{0,1\}][i]\)表示对应约束条件类型为\(j\),\(i\)右侧最近的、对应左端点不在\(i\)左侧的右端点。状态转移方程如下:

  • \(f[i][0]=f[i+1][0]+f[i+1][1]-f[min[1][i]][1]+f[i+1][2]\times(2^{tmp[i+1]-tmp[i]}-2)\)
  • \(f[i][1]=f[i+1][1]+f[i+1][0]-f[min[0][i]][0]+f[i+1][2]\times(2^{tmp[i+1]-tmp[i]}-2)\)
  • \(f[i][2]=f[i+1][0]-f[min[0][i]][0]+f[i+1][1]-f[min[1][i]][1]+f[i+1][2]\times(2^{tmp[i+1]-tmp[i]}-2)\)

最终答案为\(f[0][2]\)。

时间复杂度\(\mathcal O((n+m)(\log(n+m)+\log k))\)。其中\(\mathcal O(\log(n+m))\)为离散化复杂度,\(\mathcal O(\log k)\)为快速幂复杂度。

源代码:

#include<cstdio>
#include<cctype>
#include<algorithm>
using int64=long long;
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
constexpr int N=1e5,mod=1e9+7;
std::pair<int,int> p[2][N];
int tmp[N*4+2],min[2][N*4+2],f[N*4+2][3];
inline int power(int a,int k) {
int ret=1;
for(;k;k>>=1) {
if(k&1) ret=(int64)ret*a%mod;
a=(int64)a*a%mod;
}
return ret;
}
int main() {
const int k=getint(),n=getint(),m=getint();
int lim=0;
for(register int i=0;i<n;i++) {
tmp[++lim]=p[0][i].first=getint()-1;
tmp[++lim]=p[0][i].second=getint();
}
for(register int i=0;i<m;i++) {
tmp[++lim]=p[1][i].first=getint()-1;
tmp[++lim]=p[1][i].second=getint();
}
tmp[++lim]=k;
std::sort(&tmp[0],&tmp[lim]+1);
lim=std::unique(&tmp[0],&tmp[lim]+1)-&tmp[1];
for(register int i=0;i<=lim;i++) {
min[0][i]=min[1][i]=lim+1;
}
for(register int i=0;i<n;i++) {
p[0][i].first=std::lower_bound(&tmp[0],&tmp[lim]+1,p[0][i].first)-tmp;
p[0][i].second=std::lower_bound(&tmp[0],&tmp[lim]+1,p[0][i].second)-tmp;
min[0][p[0][i].first]=std::min(min[0][p[0][i].first],p[0][i].second);
}
for(register int i=0;i<m;i++) {
p[1][i].first=std::lower_bound(&tmp[0],&tmp[lim]+1,p[1][i].first)-tmp;
p[1][i].second=std::lower_bound(&tmp[0],&tmp[lim]+1,p[1][i].second)-tmp;
min[1][p[1][i].first]=std::min(min[1][p[1][i].first],p[1][i].second);
}
for(register int i=lim;i;i--) {
min[0][i-1]=std::min(min[0][i-1],min[0][i]);
min[1][i-1]=std::min(min[1][i-1],min[1][i]);
}
f[lim][0]=f[lim][1]=f[lim][2]=1;
for(register int i=lim-1;i>=0;i--) {
int g[3];
g[0]=(f[i+1][0]-f[min[0][i]][0]+mod)%mod;
g[1]=(f[i+1][1]-f[min[1][i]][1]+mod)%mod;
g[2]=(int64)f[i+1][2]*((power(2,tmp[i+1]-tmp[i])-2+mod)%mod)%mod;
f[i][0]=((int64)f[i+1][0]+g[1]+g[2])%mod;
f[i][1]=((int64)f[i+1][1]+g[0]+g[2])%mod;
f[i][2]=((int64)g[0]+g[1]+g[2])%mod;
}
printf("%d\n",f[0][2]);
return 0;
}

[CF930E]/[CF944G]Coins Exhibition的更多相关文章

  1. 【CF944G】Coins Exhibition DP+队列

    [CF944G]Coins Exhibition 题意:Jack去年参加了一个珍稀硬币的展览会.Jack记得一共有 $k$ 枚硬币,这些硬币排成一行,从左到右标号为 $1$ 到 $k$ ,每枚硬币是正 ...

  2. CF930E Coins Exhibition

    题意:平面上一共有k个硬币(k<=1e9),给你n个区间这些区间中至少有一个硬币反面朝上,m个区间中至少有一个硬币正面朝上.问有多少种硬币放置方案?n,m<=100005. 标程: #in ...

  3. [LeetCode] Arranging Coins 排列硬币

    You have a total of n coins that you want to form in a staircase shape, where every k-th row must ha ...

  4. ACM: Gym 101047M Removing coins in Kem Kadrãn - 暴力

     Gym 101047M Removing coins in Kem Kadrãn Time Limit:2000MS     Memory Limit:65536KB     64bit IO Fo ...

  5. Codeforces 2016 ACM Amman Collegiate Programming Contest A. Coins(动态规划/01背包变形)

    传送门 Description Hasan and Bahosain want to buy a new video game, they want to share the expenses. Ha ...

  6. csuoj 1119: Collecting Coins

    http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1119 1119: Collecting Coins Time Limit: 3 Sec  Memo ...

  7. Coins

    Description Whuacmers use coins.They have coins of value A1,A2,A3...An Silverland dollar. One day Hi ...

  8. hdu 1398 Square Coins (母函数)

    Square Coins Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tota ...

  9. (混合背包 多重背包+完全背包)The Fewest Coins (poj 3260)

    http://poj.org/problem?id=3260   Description Farmer John has gone to town to buy some farm supplies. ...

随机推荐

  1. 函数实现多个按钮控制一个div

    <!DOCTYPE HTML><html><head> <meta http-equiv="txttent-Type" txttent=& ...

  2. CSS中的块级元素、内联元素(行内元素)

    Block element 块级元素    顾名思义就是以块显示的元素,高度宽度都是可以设置的.比如我们常用 的<div>.<p>.<ul>默认状态下都是属于块级元 ...

  3. jw player学习笔记----跨域请求

    需求来源:播放器皮肤文件请求不到,被限制了. 参考官网解决方案: http://www.longtailvideo.com/support/jw-player/28844/crossdomain-fi ...

  4. CSS垂直居中小结

    1.设置子元素: { ... position :absolute; margin:auto; top:; right:; bottom:; left:; } 2.设置子元素:(height必须是固定 ...

  5. c语言指针学习【转】

    前言 近期俄罗斯的陨石.四月的血月.五月北京的飞雪以及天朝各种血腥和混乱,给人一种不详的预感.佛祖说的末法时期,五浊恶世 ,十恶之世,人再无心法约束,道德沦丧,和现在正好吻合.尤其是在天朝,空气,水, ...

  6. idea真不习惯啊

    http://blog.csdn.net/z69183787/article/details/41416189

  7. 通过 CLI 搭建 ghost

    参考: ghost 官网 系统架构说明 架构 架构说明 本实践将 web 接入, nodejs 服务, 数据库分离, 适合生产环境场景. nginx 接入请求, 反向代理后端 nodejs 服务 no ...

  8. Python与金融分析基础

    一 .ipython的简单使用 IPython:交互式的Python命令行 丰富的快捷键 TAB键自动完成 ?:内省.命名空间搜索 !:执行系统命令 魔术命令:以%开始的命令 %run:执行文件代码 ...

  9. (十一)__LINE__、__FUNCTION__的使用

    单片机中也可以用__LINE和__FUNCTION__进行异常信息打印,分别代表当前代码行数和当前代码函数名 printf("line:%d\r\n",__LINE__); pri ...

  10. windows使用celery遇到的错误

    https://www.jianshu.com/p/e5539d96641c 按照这个教程一步步执行到最后报错了. 运行task_dispatcher.py的时候 ValueError: not en ...