题意:

有一个长度为$N$的递增序列$S_i$,要把它分成$X,Y$两组,使得$X$中元素两两之差不小于$A$且$Y$中元素两两之差不小于$B$,求方案数

首先考虑$O\left(n^2\right)$的做法:

为了方便,我们令$S_0=-\infty$

设$f_{M,i,j}(M\in\{X,Y\},1\leq i\leq n,0\leq j\lt i)$表示已划分好$S_{1\cdots i}$且$S_j$是最后一个不属于$M$的元素的方案数

已算好$f_{X,1\cdots i,j}$和$f_{Y,1\cdots i,j}$,如何转移?

①若$S_{i+1}-S_i\geq A$,$S_{i+1}$可被放入$X$中,则$f_{X,i+1,0\cdots i-1}=f_{X,i,0\cdots i-1}$

否则$S_i,S_{i+1}$不可一起被放入$X$中,$f_{X,i+1,0\cdots i-1}=0$

②显然$f_{Y,i+1,i}=\sum\limits_{j=0}^{i-1}[S_{i+1}-S_j\geq B]f_{X,i,j}$

对$f_Y$的处理相似

最后的答案就是$\sum\limits_{i=0}^{n-1}f_{X,n,i}+\sum\limits_{i=0}^{n-1}f_{Y,n,i}$

#include<stdio.h>
#define ll long long
#define mod 1000000007
int fx[2010][2010],fy[2010][2010];
ll a[2010];
int main(){
	int n,i,j;
	ll A,B;
	scanf("%d%lld%lld",&n,&A,&B);
	for(i=1;i<=n;i++)scanf("%lld",a+i);
	a[0]=-4223372036854775807ll;
	fx[1][0]=fy[1][0]=1;
	for(i=1;i<n;i++){
		if(a[i+1]-a[i]>=A){
			for(j=0;j<i;j++)fx[i+1][j]=fx[i][j];
		}
		if(a[i+1]-a[i]>=B){
			for(j=0;j<i;j++)fy[i+1][j]=fy[i][j];
		}
		for(j=0;j<i;j++){
			if(a[i+1]-a[j]>=B)fy[i+1][i]=(fy[i+1][i]+fx[i][j])%mod;
			if(a[i+1]-a[j]>=A)fx[i+1][i]=(fx[i+1][i]+fy[i][j])%mod;
		}
	}
	j=0;
	for(i=0;i<n;i++)j=((j+fx[n][i])%mod+fy[n][i])%mod;
	printf("%d",j);
}

考虑优化~

首先我们肯定不能开二维数组,考虑当前DP到$S_i$,只存$f_{M,j}$,并看一看当$i$变为$i+1$对答案的影响

因为$S$是递增的,所以满足$S_{i+1}-S_j\geq B$的$S_j$一定是一段前缀,所以我们可以用二分找到右端点并用线段树求区间和

其他转移就相当于线段树的单点更新

再用lazy tag实现清零即可

#include<stdio.h>
#define ll long long
#define mod 1000000007
int sumx[400010],sumy[400010],lazx[400010],lazy[400010],*laz,*sum,n;
ll a[100010];
void pushdown(int x){
	if(laz[x]){
		laz[x<<1]=laz[x<<1|1]=1;
		sum[x<<1]=sum[x<<1|1]=0;
		laz[x]=0;
	}
}
int query(int L,int R,int l,int r,int x){
	if(L<=l&&r<=R)return sum[x];
	pushdown(x);
	int mid=(l+r)>>1,ans=0;
	if(L<=mid)ans=(ans+query(L,R,l,mid,x<<1))%mod;
	if(mid<R)ans=(ans+query(L,R,mid+1,r,x<<1|1))%mod;
	return ans;
}
void modify(int pos,int v,int l,int r,int x){
	if(l==r){
		sum[x]=(sum[x]+v)%mod;
		return;
	}
	pushdown(x);
	int mid=(l+r)>>1;
	if(pos<=mid)
		modify(pos,v,l,mid,x<<1);
	else
		modify(pos,v,mid+1,r,x<<1|1);
	sum[x]=(sum[x<<1]+sum[x<<1|1])%mod;
}
int queryx(int L,int R){
	laz=lazx;
	sum=sumx;
	return query(L,R,0,n-1,1);
}
void modifyx(int pos,int v){
	laz=lazx;
	sum=sumx;
	modify(pos,v,0,n-1,1);
}
int queryy(int L,int R){
	laz=lazy;
	sum=sumy;
	return query(L,R,0,n-1,1);
}
void modifyy(int pos,int v){
	laz=lazy;
	sum=sumy;
	modify(pos,v,0,n-1,1);
}
int main(){
	int i,l,r,mid,x,t1,t2;
	ll A,B;
	scanf("%d%lld%lld",&n,&A,&B);
	for(i=1;i<=n;i++)scanf("%lld",a+i);
	a[0]=-4223372036854775807ll;
	modifyx(0,1);
	modifyy(0,1);
	for(i=1;i<n;i++){
		l=0;
		r=i-1;
		while(l<=r){
			mid=(l+r)>>1;
			if(a[i+1]-a[mid]>=B){
				x=mid;
				l=mid+1;
			}else
				r=mid-1;
		}
		t1=queryx(0,x);
		l=0;
		r=i-1;
		while(l<=r){
			mid=(l+r)>>1;
			if(a[i+1]-a[mid]>=A){
				x=mid;
				l=mid+1;
			}else
				r=mid-1;
		}
		t2=queryy(0,x);
		if(a[i+1]-a[i]<A){
			sumx[1]=0;
			lazx[1]=1;
		}
		if(a[i+1]-a[i]<B){
			sumy[1]=0;
			lazy[1]=1;
		}
		modifyy(i,t1);
		modifyx(i,t2);
	}
	printf("%d",(queryx(0,n-1)+queryy(0,n-1))%mod);
}

[AGC009C]Division into 2的更多相关文章

  1. AGC009C Division into Two

    题意 有\(n\)个严格升序的数,请你分成两个集合\(A\)和\(B\),其中一个集合任意两数之差不小于\(x\),另一集合任意两数之差不小于\(y\). 问方案数,集合可以为空. $n \le 10 ...

  2. 【AGC009C】Division into Two

    [AGC009C]Division into Two 题面 洛谷 题解 首先有一个比较显然的\(n^2\)算法: 设\(f_{i,j}\)表示\(A\)序列当前在第\(i\)个,\(B\)序列当前在第 ...

  3. python from __future__ import division

    1.在python2 中导入未来的支持的语言特征中division(精确除法),即from __future__ import division ,当我们在程序中没有导入该特征时,"/&qu ...

  4. [LeetCode] Evaluate Division 求除法表达式的值

    Equations are given in the format A / B = k, where A and B are variables represented as strings, and ...

  5. 关于分工的思考 (Thoughts on Division of Labor)

    Did you ever have the feeling that adding people doesn't help in software development? Did you ever ...

  6. POJ 3140 Contestants Division 树形DP

    Contestants Division   Description In the new ACM-ICPC Regional Contest, a special monitoring and su ...

  7. 暴力枚举 UVA 725 Division

    题目传送门 /* 暴力:对于每一个数都判断,是否数字全都使用过一遍 */ #include <cstdio> #include <iostream> #include < ...

  8. GDC2016【全境封锁(Tom Clancy's The Division)】对为何对应Eye Tracked System,以及各种优点的演讲报告

    GDC2016[全境封锁(Tom Clancy's The Division)]对为何对应Eye Tracked System,以及各种优点的演讲报告 原文 4Gamer編集部:松本隆一 http:/ ...

  9. Leetcode: Evaluate Division

    Equations are given in the format A / B = k, where A and B are variables represented as strings, and ...

随机推荐

  1. HDU2255:奔小康赚大钱(KM算法)

    奔小康赚大钱 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Subm ...

  2. 毕业答辩的PPT攻略

    关于内容: 1.一般概括性内容:课题标题.答辩人.课题执行时间.课题指导教师.课题的归属.致谢等.  2.课题研究内容:研究目的.方案设计(流程图).运行过程.研究结果.创新性.应用价值.有关课题延续 ...

  3. powershell for rename server name

    Rename server name if server has not yet joined AD $Hostname = "newname" $username = " ...

  4. java md5加密 不依赖base64包

    /** * MD5 加密 */ private String getMD5Str(String str) { MessageDigest messageDigest = null; try { mes ...

  5. a标签的download属性简介

    最近在工作中需要一个前端直接下载静态文件的需求,之前有粗略的了解过a标签的download属性,通过download和href属性可以实现文件的下载. 简介 HTML <a> 元素 (或锚 ...

  6. 布局之BFC

    BFC 什么是BFC,在哪里需要用到BFC,BFC有什么规则?生成BFC有什么条件?这几个问题,我将为大家一一解释,下面我们进入正题. BFC(Block formatting context)直译为 ...

  7. js 禁止鼠标和键盘行为

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  8. 解决mysql报错:- Expression #1 of ORDER BY clause is not in GROUP BY clause and contains nonaggregated column 'information_schema.PROFILING.SEQ'

    mysql执行报错: - Expression #1 of ORDER BY clause is not in GROUP BY clause and contains nonaggregated c ...

  9. [转载]解决clickonce不支持administer权限问题

    转自ClickOnce deployment vs. requestedExecutionLevel = requireAdministrator ClickOnce方式部署应用简单方便,估计很多人都 ...

  10. bzoj 2705 数学 欧拉函数

    首先因为N很大,我们几乎不能筛任何东西 那么考虑设s(p)为 gcd(i,n)=p 的个数,显然p|n的时候才有意义 因为i与n的gcd肯定是n的因数,所以那么可得ans=Σ(p*s(p)) 那么对于 ...