Uva 12627 Erratic Expansion(递归)
这道题大体意思是利用一种递归规则生成不同的气球,问在某两行之间有多少个红气球。
我拿到这个题,一开始想的是递归求解,但在如何递归求解的思路上我的方法是错误的。在研读了例题上给出的提示后豁然开朗(顺便吐槽一下算法竞赛第二版在这这道题目上(P246)提示写的有问题,g(k,i)=2g(k-1,i-2^(k-1))+c(k-1) ,他把c(k-1)写成了c(k)...我纠结这个纠结了好久)
根据题目提示,这道题可以用f(k,i)表示k小时后最上边i行的红气球总数
那么我们的答案就可以表示为f(k,b)-f(k,a-1)
如何求f(k,i)?
这里我们通过观察,在k小时后所分成的四部分气球中,最右下角区域的气球是跟其他区域气球不相同的。因此我们可以分成两种情况(i在上半部分和i在下半部分)。
当i<2^(k-1),f(k,i)=2*f(k-1,i)
当i>=2^(k-1),f(k,i)=c(k-1)+f(k-1,i-2^(k-1))
其中c(k-1)代表完整的那部分的红气球数,也就是k-1小时后的红气球数。
由气球构造方式可得递推式:c(k)=3c(k-1),c(0)=1,可知这是个等比数列,求得c(k)=3^k
至此我们就可以得到我们想要的答案了。
同理,我们也可以利用g(k,i)表示k小时后最下边i行的红气球总数,把我们的答案用g(k,i)表示出来,这里不再叙述。
以下是完整代码:
#include <cstdio>
using namespace std;
long long c(int k){
long long sum = ;
while(k--)sum*=;
return sum;
}
long long g(int k, int i) {
if(i == ) return ;
if(k == ) return ; int k2 = << (k-);
if(i >= k2) return *g(k-, i-k2) + c(k-);
else return g(k-,i);
}
long long f(int k,int i){
if(i==)return ;//注意这两处边界的处理
if(k==)return ;
int t = << (k-);
if(i<t)return *f(k-,i);
else return *c(k-) + f(k-,i-t);
}
int main(){
int T, k, a, b;
scanf("%d",&T);
for(int kase = ; kase <= T; kase++) {
scanf("%d%d%d",&k,&a,&b);
printf("Case %d: %lld\n",kase,f(k, b) - f(k, a-));
//int t =1 << k;
//printf("Case %d: %lld\n",kase,g(k, t-a+1) - g(k,t- b));
}
return ;
}
long long c(int i) { return i == ? : c(i-)*; }
另外代码仓库中c的求法比较简洁,值得学习。
Uva 12627 Erratic Expansion(递归)的更多相关文章
- uva 12627 - Erratic Expansion(递归求解)
递归的边界条件写的多了--不是必需写呢么多的.. 不明确可共同探讨~ #include<cstdio> #include<iostream> #include<cmath ...
- UVA - 12627 Erratic Expansion(奇怪的气球膨胀)(递归)
题意:问k小时后,第A~B行一共有多少个红气球. 分析:观察图可发现,k小时后,图中最下面cur行的红气球个数满足下式: (1)当cur <= POW[k - 1]时, dfs(k, cur) ...
- UVa 12627 Erratic Expansion - 分治
因为不好复制题目,就出给出链接吧: Vjudge传送门[here] UVa传送门[here] 请仔细看原题上的那幅图,你会发现,在时间t(t > 0),当前的气球构成的一幅图,它是由三个时间为( ...
- UVA 12627 - Erratic Expansion
一个红球能够分裂为3个红球和一个蓝球. 一个蓝球能够分裂为4个蓝球. 分裂过程下图所看到的: 设当前状态为k1.下一状态为k2. k1的第x行红球个数 * 2 ⇒ k2第2*x行的红球个数. k1的第 ...
- UVA - 12627 Erratic Expansion 奇怪的气球膨胀 (分治)
紫书例题p245 Piotr found a magical box in heaven. Its magic power is that if you place any red balloon i ...
- 12627 - Erratic Expansion——[递归]
Piotr found a magical box in heaven. Its magic power is that if you place any red balloon inside it ...
- UVA 12673 Erratic Expansion 奇怪的气球膨胀 (递推)
不难发现,每过一个小时,除了右下方的气球全都是蓝色以外,其他都和上一个小时的气球是一样的,所以是可以递推的.然后定义一类似个前缀和的东西f(k,i)表示k小时之后上面i行的红气球数.预处理出k小时的红 ...
- 【数形结合】Erratic Expansion
[UVa12627]Erratic Expansion 算法入门经典第8章8-12(P245) 题目大意:起初有一个红球,每一次红球会分成三红一蓝,蓝球会分成四蓝(如图顺序),问K时的时候A~B行中有 ...
- UVa 12627 (递归 计数 找规律) Erratic Expansion
直接说几个比较明显的规律吧. k个小时以后,红气球的个数为3k. 单独观察一行: 令f(r, k)为k个小时后第r行红气球的个数. 如果r为奇数,f(r, k) = f((r+1)/2, k-1) * ...
随机推荐
- Redis分布式锁的正确实现方式(Java版)
前言 分布式锁一般有三种实现方式:1. 数据库乐观锁:2. 基于Redis的分布式锁:3. 基于ZooKeeper的分布式锁.本篇博客将介绍第二种方式,基于Redis实现分布式锁.虽然网上已经有各种介 ...
- Python 学习笔记(四)数字(二)
Python Python2 中除法的问题 >>> 3 / 6 0 >>> 3.0 / 6 0.5 >>> 3.0 / 6.0 0.5 >& ...
- 菜鸟崛起 DB Chapter 1 数据库概述
1. 数据库的概述 在目前阶段,如果要存储和管理数据,则离不开数据库.当数据存储到数据库后,就会通过数据库管理系统对这些数据进行组织和管理.数据库由一批数据构成有序的集合,这些数据被存放在结构化的数据 ...
- python使用sqlalchemy连接mysql数据库
环境:centos7+python2.7.5+sqlalchemy sqlalchemy是python当中比较出名的orm程序.在python中,使用sqlalchemy连接mysql数据库进行操作非 ...
- iOS10 开发权限适配设置 崩溃(上传打包后构建版本一直不显示)
ios10 系统必须强制配置系统权限 如果不配置,调试的时候导致崩溃,还会引发包无效的问题,导致上传打包后构建版本一直不显示 解决方案1.在项目中找到info.plist文件,右键点击以 Source ...
- iOS之已经审核通过的app在App Store上搜不到的解决办法
修改定价将你的app定价修改成0.99刀 修改你的发行范围,全取消后只选中国. save这时候你的app status将会变成pending contract. 将之前的修改都改回来,修改定价free ...
- ssm整合实现注册与登录功能
最简洁易懂的SSM整合源码都在这里了 激情提示: 1.本项目是用IDEA编写的,不管你是习惯何种ide工具,那也只是工具而已,源代码才是本质 2.本项目只拥有注册和登录功能,简易的功能和详细的注释,是 ...
- ABAP术语-Fiscal Year
Fiscal Year 原文:http://www.cnblogs.com/qiangsheng/archive/2008/02/02/1062109.html Generally a period ...
- ABAP术语-Error Message
Error Message 原文:http://www.cnblogs.com/qiangsheng/archive/2008/01/30/1058283.html Information from ...
- mongo复制集脑裂问题如何处理
mongo replication 脑裂问题如何处理: 一.问题描述:一套mongo replication有4个节点.1个仲裁节点.在停止实例(或实例毁坏)的时候,导致所有节点都变为SECONDAR ...