[CF895C]Square Subsets
题目大意:给一个集合$S$($1\leq S_i\leq 70$),选择一个非空子集,使它们的乘积等于某个整数的平方的方法的数量。 求方案数,若两种方法选择的元素的索引不同,则认为是不同的方法。
题解:$70$以内的质数只有$19$个,考虑状压$DP$,$f_{i,j}$表示这个数为$i$,若$j$二进制下的第$k$位为$1$,表示它含第$k$个质数奇数个,转移显然
卡点:无
C++ Code:
#include <cstdio>
#include <cstring>
#define maxn 500010
using namespace std;
const int mod = 1000000007;
const int plist[19] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67};
int n, a;
int cnt[71], now = 1, past;
long long f[2][1 << 19];
long long pw(long long base, long long p) {
if (p < 1) return 1;
long long ans = 1;
for (; p; p >>= 1, base = base * base % mod)
if (p & 1) ans = ans * base % mod;
return ans;
}
int main() {
scanf("%d", &n);
for (int i = 1; i <= n; i++) {
scanf("%d", &a);
cnt[a]++;
}
f[now][0] = 1;
for (int i = 1; i <= 70; i++) {
now ^= past ^= now ^= past;
if (cnt[i]) {
memset(f[now], 0, sizeof f[now]);
int cur = 0, Yx = i;
for (int j = 0; j < 19; j++) {
while (Yx % plist[j] == 0) {
Yx /= plist[j];
cur ^= 1 << j;
}
}
long long tmp = pw(2, cnt[i] - 1);
for (int j = 0; j < 1 << 19; j++) {
f[now][j] = (f[now][j] + f[past][j] * tmp) % mod;
f[now][j ^ cur] = (f[now][j ^ cur] + f[past][j] * tmp) % mod;
}
} else now ^= past ^= now ^= past;
}
printf("%lld\n", (f[now][0] - 1 + mod) % mod);
return 0;
}
[CF895C]Square Subsets的更多相关文章
- CF895C: Square Subsets && 【BZOJ2844】albus就是要第一个出场
CF895C: Square Subsets && [BZOJ2844]albus就是要第一个出场 这两道题很类似,都是线性基的计数问题,解题的核心思想也一样. CF895C Squa ...
- 洛谷CF895C Square Subsets(线性基)
洛谷传送门 不知道线性基是什么东西的可以看看蒟蒻的总结 题意: 给你n个数,每个数<=70,问有多少个集合,满足集合中所有数相乘是个完全平方数(空集除外) 题解: 完全看不出这玩意儿和线性基有什 ...
- CF895C Square Subsets (组合数+状压DP+简单数论)
题目大意:给你一个序列,你可以在序列中任选一个子序列,求子序列每一项的积是一个平方数的方案数. 1<=a[i]<=70 因为任何一个大于2的数都可以表示成几个质数的幂的乘积 所以我们预处理 ...
- CF895C Square Subsets [线性基]
线性基的题- 考虑平方数只和拆解质因子的个数的奇偶性有关系 比如说你 \(4\) 和 \(16\) 的贡献都是一样的.因为 \(4 = 2^2 , 16 = 2^4\) \(2\) 和 \(4\) 奇 ...
- Codeforces 895C - Square Subsets
895C - Square Subsets 思路:状压dp. 每个数最大到70,1到70有19个质数,给这19个质数标号,与状态中的每一位对应. 状压:一个数含有这个质因子奇数个,那么他状态的这一位是 ...
- Codeforces Round #448 C. Square Subsets
题目链接 Codeforces Round #448 C. Square Subsets 题解 质因数 *质因数 = 平方数,问题转化成求异或方程组解的个数 求出答案就是\(2^{自由元-1}\) , ...
- Codeforces 895.C Square Subsets
C. Square Subsets time limit per test 4 seconds memory limit per test 256 megabytes input standard i ...
- Codeforces 895C Square Subsets(状压DP 或 异或线性基)
题目链接 Square Subsets 这是白书原题啊 先考虑状压DP的做法 $2$到$70$总共$19$个质数,所以考虑状态压缩. 因为数据范围是$70$,那么我们统计出$2$到$70$的每个数的 ...
- Codeforces 895C - Square Subsets 状压DP
题意: 给了n个数,要求有几个子集使子集中元素的和为一个数的平方. 题解: 因为每个数都可以分解为质数的乘积,所有的数都小于70,所以在小于70的数中一共只有19个质数.可以使用状压DP,每一位上0表 ...
随机推荐
- JS高级. 02 面向对象、创建对象、构造函数、自定义构造函数、原型
面向对象的三大特性: 封装 a) 把一些属性和方法装到一个对象里 2. 继承 a) js中的继承是指: 一个对象没有一些方法和属性,而另一个对象有 把另一个个对象的属性和方法,拿过来自己用, ...
- html 截图粘粘图片JS
web前端socket聊天室功能和在线编辑器上传编辑内容的时候经常会需要上传一些图文信息,但是很多编辑器不支持截图粘粘的功能,这里参考了网友分享的可用方法做一个记录. <html> < ...
- Centos7 搭建 hadoop3.1.1 集群教程
配置环境要求: Centos7 jdk 8 Vmware 14 pro hadoop 3.1.1 Hadoop下载 安装4台虚拟机,如图所示 克隆之后需要更改网卡选项,ip,mac地址,uuid 重启 ...
- HDU1209:Clock
参考:https://blog.csdn.net/libin56842/article/details/8990530 https://blog.csdn.net/u011479875/article ...
- NO-ZERO(空格补全)
The NO-ZERO command follows the DATA statement REPORT Z_Test123_01. DATA: W_NUR(10) TYPE N. MOVE 50 ...
- java练习题——类与对象
一.请依据代码的输出结果,自行总结Java字段初始化的规律 public static void main(String[] args) { InitializeBlockClass obj=new ...
- 3155: Preprefix sum
3155: Preprefix sum https://www.lydsy.com/JudgeOnline/problem.php?id=3155 分析: 区间修改,区间查询,线段树就好了. 然后,这 ...
- kafka监听类
package com.datad.dream.service; import com.alibaba.fastjson.JSON; import com.datad.dream.dao.KafkaI ...
- ora-12154 TNS:"无法处理服务名"的一个解决方法
http://www.cnblogs.com/xh3/archive/2007/04/21/722217.html 很怪异的一个问题,在网络环境下配置客户端,竟然怎么也连不上主机了,看了不少帖子,大多 ...
- JVM运行内存分配和回收
本文来自网易云社区 作者:吕宗胜 Java语言与C语言相比,最大的特点是编程人员无需过多的关心Java的内存分配和回收,因为所有这一切,Java的虚拟机都帮我们实现了.JVM的内存管理,大大降低了开发 ...