[CF895C]Square Subsets
题目大意:给一个集合$S$($1\leq S_i\leq 70$),选择一个非空子集,使它们的乘积等于某个整数的平方的方法的数量。 求方案数,若两种方法选择的元素的索引不同,则认为是不同的方法。
题解:$70$以内的质数只有$19$个,考虑状压$DP$,$f_{i,j}$表示这个数为$i$,若$j$二进制下的第$k$位为$1$,表示它含第$k$个质数奇数个,转移显然
卡点:无
C++ Code:
#include <cstdio>
#include <cstring>
#define maxn 500010
using namespace std;
const int mod = 1000000007;
const int plist[19] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67};
int n, a;
int cnt[71], now = 1, past;
long long f[2][1 << 19];
long long pw(long long base, long long p) {
if (p < 1) return 1;
long long ans = 1;
for (; p; p >>= 1, base = base * base % mod)
if (p & 1) ans = ans * base % mod;
return ans;
}
int main() {
scanf("%d", &n);
for (int i = 1; i <= n; i++) {
scanf("%d", &a);
cnt[a]++;
}
f[now][0] = 1;
for (int i = 1; i <= 70; i++) {
now ^= past ^= now ^= past;
if (cnt[i]) {
memset(f[now], 0, sizeof f[now]);
int cur = 0, Yx = i;
for (int j = 0; j < 19; j++) {
while (Yx % plist[j] == 0) {
Yx /= plist[j];
cur ^= 1 << j;
}
}
long long tmp = pw(2, cnt[i] - 1);
for (int j = 0; j < 1 << 19; j++) {
f[now][j] = (f[now][j] + f[past][j] * tmp) % mod;
f[now][j ^ cur] = (f[now][j ^ cur] + f[past][j] * tmp) % mod;
}
} else now ^= past ^= now ^= past;
}
printf("%lld\n", (f[now][0] - 1 + mod) % mod);
return 0;
}
[CF895C]Square Subsets的更多相关文章
- CF895C: Square Subsets && 【BZOJ2844】albus就是要第一个出场
CF895C: Square Subsets && [BZOJ2844]albus就是要第一个出场 这两道题很类似,都是线性基的计数问题,解题的核心思想也一样. CF895C Squa ...
- 洛谷CF895C Square Subsets(线性基)
洛谷传送门 不知道线性基是什么东西的可以看看蒟蒻的总结 题意: 给你n个数,每个数<=70,问有多少个集合,满足集合中所有数相乘是个完全平方数(空集除外) 题解: 完全看不出这玩意儿和线性基有什 ...
- CF895C Square Subsets (组合数+状压DP+简单数论)
题目大意:给你一个序列,你可以在序列中任选一个子序列,求子序列每一项的积是一个平方数的方案数. 1<=a[i]<=70 因为任何一个大于2的数都可以表示成几个质数的幂的乘积 所以我们预处理 ...
- CF895C Square Subsets [线性基]
线性基的题- 考虑平方数只和拆解质因子的个数的奇偶性有关系 比如说你 \(4\) 和 \(16\) 的贡献都是一样的.因为 \(4 = 2^2 , 16 = 2^4\) \(2\) 和 \(4\) 奇 ...
- Codeforces 895C - Square Subsets
895C - Square Subsets 思路:状压dp. 每个数最大到70,1到70有19个质数,给这19个质数标号,与状态中的每一位对应. 状压:一个数含有这个质因子奇数个,那么他状态的这一位是 ...
- Codeforces Round #448 C. Square Subsets
题目链接 Codeforces Round #448 C. Square Subsets 题解 质因数 *质因数 = 平方数,问题转化成求异或方程组解的个数 求出答案就是\(2^{自由元-1}\) , ...
- Codeforces 895.C Square Subsets
C. Square Subsets time limit per test 4 seconds memory limit per test 256 megabytes input standard i ...
- Codeforces 895C Square Subsets(状压DP 或 异或线性基)
题目链接 Square Subsets 这是白书原题啊 先考虑状压DP的做法 $2$到$70$总共$19$个质数,所以考虑状态压缩. 因为数据范围是$70$,那么我们统计出$2$到$70$的每个数的 ...
- Codeforces 895C - Square Subsets 状压DP
题意: 给了n个数,要求有几个子集使子集中元素的和为一个数的平方. 题解: 因为每个数都可以分解为质数的乘积,所有的数都小于70,所以在小于70的数中一共只有19个质数.可以使用状压DP,每一位上0表 ...
随机推荐
- 通过swagger下载的文件乱码解决方法,求解
这里的数据显示 点击Download Templates下载之后是显示一个response流都不是一个xlsx文件 这个是由什么原因造成的,求解?
- android发布帖子类技术
最近练习一些关于发布帖子的技术,说来也简单,就学了一点皮毛吧!好了,下面就上代码吧! 首先设计服务器的访问类,大家都知道现在东西都要联网的嘛! JSONParser的类: public class J ...
- php将html页面截图并保存成图片
采用html5的canvas,将图片绘制到画布上,然后用canvas的 toDataURL 方法. 但是在图片转base64的过程中遇到了两个问题, 1:图片无法绘制,转成的base64 用浏览器打开 ...
- html5 获取和设置data-*属性值的四种方法讲解
1.获取id的对象 2.需要获取的就是data-id 和 dtat-vice-id的值 一:getAttribute()方法 const getId = document.getElementById ...
- zabbix配置报警媒介-用户-动作-邮件脚本触发mailx邮件报警
2018-09-16更新,新版本zabbix不需要使用脚本发送邮件,在zabbix web界面直接配置就可以 配置邮件参数,测试发送邮件 确认安装相关服务,centos7默认安装 [root@VM_1 ...
- mysql日志管理#慢日志详解
MySQL的慢查询日志是MySQL提供的一种日志记录,它用来记录在MySQL中响应时间超过阀值的语句,具体指运行时间超过long_query_time值的SQL,则会被记录到慢查询日志中 long_q ...
- 如何防御网站被ddos攻击 首先要了解什么是流量攻击
什么是DDOS流量攻击?我们大多数人第一眼看到这个DDOS就觉得是英文的,有点难度,毕竟是国外的,其实简单通俗来讲,DDOS攻击是利用带宽的流量来攻击服务器以及网站. 举个例子,服务器目前带宽是100 ...
- Android: Requesting root access in your app
package com.certusnet.videomonitor; import java.util.List; import java.io.IOException; import java.i ...
- linux命令大全(转载)
在搭建openstack时遇到问题,导致上网查询相关信息.找到一篇不错的文章,希望对大家有用.下附地址: http://blog.csdn.net/junbujianwpl/article/detai ...
- Django 2.0官方文档中文 渣翻 总索引(个人学习,欢迎指正)
Django 2.0官方文档中文 渣翻 总索引(个人学习,欢迎指正) 置顶 2017年12月08日 11:19:11 阅读数:20277 官方原文: https://docs.djangoprojec ...