[CF895C]Square Subsets
题目大意:给一个集合$S$($1\leq S_i\leq 70$),选择一个非空子集,使它们的乘积等于某个整数的平方的方法的数量。 求方案数,若两种方法选择的元素的索引不同,则认为是不同的方法。
题解:$70$以内的质数只有$19$个,考虑状压$DP$,$f_{i,j}$表示这个数为$i$,若$j$二进制下的第$k$位为$1$,表示它含第$k$个质数奇数个,转移显然
卡点:无
C++ Code:
#include <cstdio>
#include <cstring>
#define maxn 500010
using namespace std;
const int mod = 1000000007;
const int plist[19] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67};
int n, a;
int cnt[71], now = 1, past;
long long f[2][1 << 19];
long long pw(long long base, long long p) {
if (p < 1) return 1;
long long ans = 1;
for (; p; p >>= 1, base = base * base % mod)
if (p & 1) ans = ans * base % mod;
return ans;
}
int main() {
scanf("%d", &n);
for (int i = 1; i <= n; i++) {
scanf("%d", &a);
cnt[a]++;
}
f[now][0] = 1;
for (int i = 1; i <= 70; i++) {
now ^= past ^= now ^= past;
if (cnt[i]) {
memset(f[now], 0, sizeof f[now]);
int cur = 0, Yx = i;
for (int j = 0; j < 19; j++) {
while (Yx % plist[j] == 0) {
Yx /= plist[j];
cur ^= 1 << j;
}
}
long long tmp = pw(2, cnt[i] - 1);
for (int j = 0; j < 1 << 19; j++) {
f[now][j] = (f[now][j] + f[past][j] * tmp) % mod;
f[now][j ^ cur] = (f[now][j ^ cur] + f[past][j] * tmp) % mod;
}
} else now ^= past ^= now ^= past;
}
printf("%lld\n", (f[now][0] - 1 + mod) % mod);
return 0;
}
[CF895C]Square Subsets的更多相关文章
- CF895C: Square Subsets && 【BZOJ2844】albus就是要第一个出场
CF895C: Square Subsets && [BZOJ2844]albus就是要第一个出场 这两道题很类似,都是线性基的计数问题,解题的核心思想也一样. CF895C Squa ...
- 洛谷CF895C Square Subsets(线性基)
洛谷传送门 不知道线性基是什么东西的可以看看蒟蒻的总结 题意: 给你n个数,每个数<=70,问有多少个集合,满足集合中所有数相乘是个完全平方数(空集除外) 题解: 完全看不出这玩意儿和线性基有什 ...
- CF895C Square Subsets (组合数+状压DP+简单数论)
题目大意:给你一个序列,你可以在序列中任选一个子序列,求子序列每一项的积是一个平方数的方案数. 1<=a[i]<=70 因为任何一个大于2的数都可以表示成几个质数的幂的乘积 所以我们预处理 ...
- CF895C Square Subsets [线性基]
线性基的题- 考虑平方数只和拆解质因子的个数的奇偶性有关系 比如说你 \(4\) 和 \(16\) 的贡献都是一样的.因为 \(4 = 2^2 , 16 = 2^4\) \(2\) 和 \(4\) 奇 ...
- Codeforces 895C - Square Subsets
895C - Square Subsets 思路:状压dp. 每个数最大到70,1到70有19个质数,给这19个质数标号,与状态中的每一位对应. 状压:一个数含有这个质因子奇数个,那么他状态的这一位是 ...
- Codeforces Round #448 C. Square Subsets
题目链接 Codeforces Round #448 C. Square Subsets 题解 质因数 *质因数 = 平方数,问题转化成求异或方程组解的个数 求出答案就是\(2^{自由元-1}\) , ...
- Codeforces 895.C Square Subsets
C. Square Subsets time limit per test 4 seconds memory limit per test 256 megabytes input standard i ...
- Codeforces 895C Square Subsets(状压DP 或 异或线性基)
题目链接 Square Subsets 这是白书原题啊 先考虑状压DP的做法 $2$到$70$总共$19$个质数,所以考虑状态压缩. 因为数据范围是$70$,那么我们统计出$2$到$70$的每个数的 ...
- Codeforces 895C - Square Subsets 状压DP
题意: 给了n个数,要求有几个子集使子集中元素的和为一个数的平方. 题解: 因为每个数都可以分解为质数的乘积,所有的数都小于70,所以在小于70的数中一共只有19个质数.可以使用状压DP,每一位上0表 ...
随机推荐
- django中的ContentType使用
使用背景 最近设计表的时候遇到一个问题,有两门课程 一门专业课,一门学位课,我们按照时间长度来进行售卖,比如专业课一个月19元,两个月35元,三个月50元. 可以这么做但是领导不让我这么设计.... ...
- Leecode刷题之旅-C语言/python-83删除排序链表中的重复元素
/* * @lc app=leetcode.cn id=83 lang=c * * [83] 删除排序链表中的重复元素 * * https://leetcode-cn.com/problems/rem ...
- STM32进阶之串口环形缓冲区实现(转载)
转载自微信公众号“玩转单片机”,感谢原作者“杰杰”. 队列的概念 在此之前,我们来回顾一下队列的基本概念:队列 (Queue):是一种先进先出(First In First Out ,简称 FIFO) ...
- vue---day03
1. Vue的生命周期 - 创建和销毁的时候可以做一些我们自己的事情 - beforeCreated - created - beforeMount - mounted - beforeUpdate ...
- SIMD数据并行(一)——向量体系结构
在计算机体系中,数据并行有两种实现路径:MIMD(Multiple Instruction Multiple Data,多指令流多数据流)和SIMD(Single Instruction Multip ...
- fiddler手机抓包配置方法
一.下载工具包 百度搜索”fiddler 下载“ ,安装最新版本 下载的软件安装包为“fiddler_4.6.20171.26113_setup.exe”格式,双击安装.安装成功,在“开始”-“所有程 ...
- P1103 书本整理
P1103 书本整理 题目描述 Frank是一个非常喜爱整洁的人.他有一大堆书和一个书架,想要把书放在书架上.书架可以放下所有的书,所以Frank首先将书按高度顺序排列在书架上.但是Frank发现,由 ...
- Windows扩展屏开发总结
本文来自网易云社区 作者:梁敏 一.多屏设置 在设置-系统-可以点击显示器1和2,可以进行单独设置: "使之成为我的主显示器"可以设置当前显示器是主屏:主屏的选择会决定整个虚拟屏幕 ...
- mysql 处理日期格式
DATE_FORMAT(createTime,'%Y-%m-%d %H:%i:%s') 对应格式: 2018-12-17 17:33:43 DATE_FORMAT()函数所有格式: 以后有需要在自 ...
- Qt 实现脉搏检测-1-心跳曲线部分
最新的想法就是写一个显示脉搏的东西,主要就是通过串口读取硬件(检测心跳的)传来的数据,在显示一下. 先实现画心跳曲线 如下图 先来电干货, 首先,在这个代码中,第一次用到了list这个东东 所以,关于 ...