题目描述

从$n$个数中选出$n-k$个,使得它们的二进制或(or)最大。输出这个值。

输入

第一行包含两个正整数$n,k(2\le n\le 100000,1\le k\le 100,k<n)$,分别表示宝石的个数以及要扔掉的宝石个数。
第二行包含$n$个整数$w_1,w_2,...,w_n(0\le w_i\le 100000)$,分别表示每个宝石的魔力。

输出

输出一行一个整数,即最大的威力。

样例输入

4 1
32 16 8 7

样例输出

56


题解

乱搞+dp

由于上限为$100000$,因此最多只有$17$个二进制位。

考虑当可以保留的数的个数$n-k\ge 17$时,显然对于每一位选出一个该位为$1$的数,选出来的数一定不超过$17$个。因此一定能够占满所有的二进制位。所以所有的数的二进制或即为答案。

当$n-k<17$时,由于$k$只有$100$,所以$n$只有$117$,因此可以暴力dp。设$f[i][j]$表示能否选出$i$个数使得它们的二进制或为$j$。然后随便转移即可。

时间复杂度$O(117*17*2^{17})$。

#include <cstdio>
bool f[17][131080];
int main()
{
int n , m , i , x , ans;
scanf("%d%d" , &n , &m);
if(n - m >= 17)
{
ans = 0;
for(i = 1 ; i <= n ; i ++ ) scanf("%d" , &x) , ans |= x;
printf("%d\n" , ans);
}
else
{
f[0][0] = 1;
int j , k;
for(i = 1 ; i <= n ; i ++ )
{
scanf("%d" , &x);
for(j = 0 ; j < n - m ; j ++ )
for(k = 0 ; k < 131072 ; k ++ )
f[j + 1][k | x] |= f[j][k];
}
for(i = 131071 ; ~i ; i -- )
if(f[n - m][i])
return printf("%d\n" , i) , 0;
}
return 0;
}

【bzoj4976】宝石镶嵌 乱搞+dp的更多相关文章

  1. “盛大游戏杯”第15届上海大学程序设计联赛夏季赛暨上海高校金马五校赛题解&&源码【A,水,B,水,C,水,D,快速幂,E,优先队列,F,暴力,G,贪心+排序,H,STL乱搞,I,尼姆博弈,J,差分dp,K,二分+排序,L,矩阵快速幂,M,线段树区间更新+Lazy思想,N,超级快速幂+扩展欧里几德,O,BFS】

    黑白图像直方图 发布时间: 2017年7月9日 18:30   最后更新: 2017年7月10日 21:08   时间限制: 1000ms   内存限制: 128M 描述 在一个矩形的灰度图像上,每个 ...

  2. Playrix Codescapes Cup (Codeforces Round #413, rated, Div. 1 + Div. 2)(A.暴力,B.优先队列,C.dp乱搞)

    A. Carrot Cakes time limit per test:1 second memory limit per test:256 megabytes input:standard inpu ...

  3. CF809E Surprise me!(莫比乌斯反演+Dp(乱搞?))

    题目大意: 给你一棵树,树上的点编号为\(1-n\).选两个点\(i.j\),能得到的得分是\(\phi(a_i*a_j)*dis(i,j)\),其中\(dis(i,j)\)表示\(a\)到\(b\) ...

  4. Codeforces 1077E (二分乱搞或者dp)

    题意:给你一个数组,可以从中选区若干种元素,但每种元素选区的个数前一种必须是后一种的2倍,选区的任意2种元素不能相同,问可以选取最多的元素个数是多少? 思路1(乱搞):记录一下每种元素的个数,然后暴力 ...

  5. VIJOS1476 旅行规划(树形Dp + DFS暴力乱搞)

    题意: 给出一个树,树上每一条边的边权为 1,求树上所有最长链的点集并. 细节: 可能存在多条最长链!最长链!最长链!重要的事情说三遍 分析: 方法round 1:暴力乱搞Q A Q,边权为正-> ...

  6. 学渣乱搞系列之dp斜率优化

    学渣乱搞系列之dp斜率优化 By 狂徒归来 貌似dp的斜率优化一直很难搞啊,尤其是像我这种数学很挫的学渣,压根不懂什么凸包,什么上凸下凸的,哎...说多了都是泪,跟wdd讨论了下,得出一些结论.本文很 ...

  7. 2016 10 28考试 dp 乱搞 树状数组

    2016 10 28 考试 时间 7:50 AM to 11:15 AM 下载链接: 试题 考试包 这次考试对自己的表现非常不满意!! T1看出来是dp题目,但是在考试过程中并没有推出转移方程,考虑了 ...

  8. POJ 3671 DP or 乱搞

    思路: 1.DP f[i][j]:前i个数 最后一个数是j的最小花费 f[i][j]=min(f[i][j],f[i-1][k]+(a[i]!=j));1<=k<=j 这种做法比较有普遍性 ...

  9. 【BZOJ-4692】Beautiful Spacing 二分答案 + 乱搞(DP?)

    4692: Beautiful Spacing Time Limit: 15 Sec  Memory Limit: 128 MBSubmit: 46  Solved: 21[Submit][Statu ...

随机推荐

  1. MySQL数据库初识——初窥MySQL

    初步了解MySQL基本数据库语言 1.创建一个Mysql数据库 create database  database_name: 2.显示所有的Mysql数据库 show databases: 3.使用 ...

  2. winform Treeview控件使用

    做角色菜单权限时用到treeview控件做树状显示菜单,简单总结了一下用法: 1.在winform窗体中拖入treeview控件,注意修改属性CheckBoxes属性为true,即在节点旁显示复选框 ...

  3. Spring常见面试题

    本文是通过收集网上各种面试指南题目及答案然后经过整理归纳而来,仅仅是为了方便以后回顾,无意冒犯各位原创作者. Spring框架 1. 什么是Spring? Spring 是个java企业级应用的开源开 ...

  4. 学习python第一天 pycharm设置

    print(“hello,world”) pycharm设置 1. 选择python 解析器,目的是确定pycharm 的运行环境. 方法: File-->Settings-->Proje ...

  5. ctf题目writeup(5)

    2019.2.1 今天继续bugku的隐写杂项题:题目链接:https://ctf.bugku.com/challenges 1. 这道题下载后用wireshark打开...看了好久也没看出个所以然, ...

  6. 文件 I/O缓冲流

    import java.io.File; import java.io.Writer; import java.util.StringTokenizer; import java.io.Reader; ...

  7. 004---Python基本数据类型--元祖

    元祖 .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px ...

  8. 仿造vue-resource的formdata传对象

    众插件不支持同步,也是没办法的事情,具体为啥就不分析了,确实搞不懂. 一直用vue-resource的post,觉得很舒服. 然,没办法只能仿造一个,自己提供一个同步方法 几个点先摆清楚 1. .th ...

  9. 如何在Moodle中显示PPT课件

    Moodle中目前是不直接支持PPT的,所以需要曲线救国: 1.安装 iSpring Free 8版本,免费版,其实是一个PPT的插件,在PPT的工具栏中有显示. 2.打开PPT后,直接在该工具中进行 ...

  10. 判断电脑CPU硬件支不支持64位

    你可以在注册表中查看: HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Session Manager\Environment\PROCESSO ...