stochastic matrix
w
Stochastic matrix - Wikipedia https://en.wikipedia.org/wiki/Stochastic_matrix
Suppose you have a timer and a row of five adjacent boxes, with a cat in the first box and a mouse in the fifth box at time zero. The cat and the mouse both jump to a random adjacent box when the timer advances. E.g. if the cat is in the second box and the mouse in the fourth one, the probability is one fourth that the cat will be in the first box and the mouse in the fifth after the timer advances. If the cat is in the first box and the mouse in the fifth one, the probability is one that the cat will be in box two and the mouse will be in box four after the timer advances. The cat eats the mouse if both end up in the same box, at which time the game ends. The random variable K gives the number of time steps the mouse stays in the game.
The Markov chain that represents this game contains the following five states specified by the combination of positions (cat,mouse). Note that while a naive enumeration of states would list 25 states, many are impossible either because the mouse can never have a lower index than the cat (as that would mean the mouse occupied the cat's box and survived to move past it), or because the sum of the two indices will always have even parity. In addition, the 3 possible states that lead to the mouse's death are combined into one:
- State 1: (1,3)
- State 2: (1,5)
- State 3: (2,4)
- State 4: (3,5)
- State 5: game over: (2,2), (3,3) & (4,4).
stochastic matrix的更多相关文章
- 随机矩阵(stochastic matrix)
最近一个月来一直在看Google排序的核心算法---PageRank排序算法[1][2],在多篇论文中涉及到图论.马尔可夫链的相关性质说明与应用[3][4][5],而最为关键,一直让我迷惑 ...
- 【十大经典数据挖掘算法】PageRank
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 我特地把PageRank作为[十大经 ...
- PageRank算法初探
1. PageRank的由来和发展历史 0x1:源自搜索引擎的需求 Google早已成为全球最成功的互联网搜索引擎,在Google出现之前,曾出现过许多通用或专业领域搜索引擎.Google最终能击败所 ...
- pagerank 数学基础
网页排序的任务中,最核心的难点在于判别网页质量. 将互联网上的网页模拟为一个节点,而这个网页的“出链”看做是指向其他节点的一条“有向边”,而“入链”则是其他节点指向这个节点的有向边.这样整个网络就变成 ...
- (zhuan) Deep Deterministic Policy Gradients in TensorFlow
Deep Deterministic Policy Gradients in TensorFlow AUG 21, 2016 This blog from: http://pemami49 ...
- HDOJ 题目5097 Page Rank(矩阵运算,模拟)
Page Rank Time Limit: 3000/1500 MS (Java/Others) Memory Limit: 100000/100000 K (Java/Others) Tota ...
- Spark MLlib LDA 源代码解析
1.Spark MLlib LDA源代码解析 http://blog.csdn.net/sunbow0 Spark MLlib LDA 应该算是比較难理解的,当中涉及到大量的概率与统计的相关知识,并且 ...
- MATLAB实例:对称双随机矩阵
MATLAB实例:对称双随机矩阵 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 双随机矩阵(doubly stochastic matrix):元素属 ...
- KDD2016,Accepted Papers
RESEARCH TRACK PAPERS - ORAL Title & Authors NetCycle: Collective Evolution Inference in Heterog ...
随机推荐
- 【DB2】经典SQL写法
1.环境准备 CREATE TABLE DataInfo( ID_1 ), ID_2 ) ) INSERT INTO DataInfo VALUES('A','Oracle'); INSERT INT ...
- 02-创建hibernate工程
编写hibernate需要的步骤 1,创建hibernate的配置文件 2,创建持久化类 3,创建对象-关系映射文件 4,通过hibernate API编写访问数据库代码 准备需要的文件. 1,准备一 ...
- rabbitMq视频教程
http://edu.51cto.com/index.php?do=lesson&id=83136
- mvc模型绑定问题
public void AddDesk(x_s_desk x_s_desk) 绑定的到 public void AddDesk(x_s_desk desk) 绑定不到 目前不知道原因 且仅有部分模型需 ...
- Silverlight实例教程 - Validation用户提交数据验证捕获(转载)
Silverlight 4 Validation验证实例系列 Silverlight实例教程 - Validation数据验证开篇 Silverlight实例教程 - Validation数据验证基础 ...
- C# 运行时中的泛型
将泛型类型或方法编译为 Microsoft 中间语言 (MSIL) 时,它包含将其标识为具有类型参数的元数据. 泛型类型的 MSIL 的使用因所提供的类型参数是值类型还是引用类型而不同. 第一次用值类 ...
- Java8 stream学习
Java8初体验(二)Stream语法详解 Java 8 flatMap示例 第一个Stream Demo IDEA里面写Stream有个坑 虽然java文件中没错,但是但编译的时候还是报错了, In ...
- EOJ Problem #3249 状态压缩+循环周期+反向递推
限量供应 Time limit per test: 4.0 seconds Time limit all tests: 4.0 seconds Memory limit: 256 megabytes ...
- hdu5795 A Simple Nim 求nim求法,打表找sg值规律 给定n堆石子,每堆有若干石子,两个人轮流操作,每次操作可以选择任意一堆取走任意个石子(不可以为空) 或者选择一堆,把它分成三堆,每堆不为空。求先手必胜,还是后手必胜。
/** 题目:A Simple Nim 链接:http://acm.hdu.edu.cn/showproblem.php?pid=5795 题意:给定n堆石子,每堆有若干石子,两个人轮流操作,每次操作 ...
- spark单机模式
1.下载spark,解压2.复制conf/spark-env.sh和conf/log4j.properties cp spark-env.sh.template spark-env.sh cp log ...