stochastic matrix
w
Stochastic matrix - Wikipedia https://en.wikipedia.org/wiki/Stochastic_matrix
Suppose you have a timer and a row of five adjacent boxes, with a cat in the first box and a mouse in the fifth box at time zero. The cat and the mouse both jump to a random adjacent box when the timer advances. E.g. if the cat is in the second box and the mouse in the fourth one, the probability is one fourth that the cat will be in the first box and the mouse in the fifth after the timer advances. If the cat is in the first box and the mouse in the fifth one, the probability is one that the cat will be in box two and the mouse will be in box four after the timer advances. The cat eats the mouse if both end up in the same box, at which time the game ends. The random variable K gives the number of time steps the mouse stays in the game.
The Markov chain that represents this game contains the following five states specified by the combination of positions (cat,mouse). Note that while a naive enumeration of states would list 25 states, many are impossible either because the mouse can never have a lower index than the cat (as that would mean the mouse occupied the cat's box and survived to move past it), or because the sum of the two indices will always have even parity. In addition, the 3 possible states that lead to the mouse's death are combined into one:
- State 1: (1,3)
- State 2: (1,5)
- State 3: (2,4)
- State 4: (3,5)
- State 5: game over: (2,2), (3,3) & (4,4).
stochastic matrix的更多相关文章
- 随机矩阵(stochastic matrix)
最近一个月来一直在看Google排序的核心算法---PageRank排序算法[1][2],在多篇论文中涉及到图论.马尔可夫链的相关性质说明与应用[3][4][5],而最为关键,一直让我迷惑 ...
- 【十大经典数据挖掘算法】PageRank
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 我特地把PageRank作为[十大经 ...
- PageRank算法初探
1. PageRank的由来和发展历史 0x1:源自搜索引擎的需求 Google早已成为全球最成功的互联网搜索引擎,在Google出现之前,曾出现过许多通用或专业领域搜索引擎.Google最终能击败所 ...
- pagerank 数学基础
网页排序的任务中,最核心的难点在于判别网页质量. 将互联网上的网页模拟为一个节点,而这个网页的“出链”看做是指向其他节点的一条“有向边”,而“入链”则是其他节点指向这个节点的有向边.这样整个网络就变成 ...
- (zhuan) Deep Deterministic Policy Gradients in TensorFlow
Deep Deterministic Policy Gradients in TensorFlow AUG 21, 2016 This blog from: http://pemami49 ...
- HDOJ 题目5097 Page Rank(矩阵运算,模拟)
Page Rank Time Limit: 3000/1500 MS (Java/Others) Memory Limit: 100000/100000 K (Java/Others) Tota ...
- Spark MLlib LDA 源代码解析
1.Spark MLlib LDA源代码解析 http://blog.csdn.net/sunbow0 Spark MLlib LDA 应该算是比較难理解的,当中涉及到大量的概率与统计的相关知识,并且 ...
- MATLAB实例:对称双随机矩阵
MATLAB实例:对称双随机矩阵 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 双随机矩阵(doubly stochastic matrix):元素属 ...
- KDD2016,Accepted Papers
RESEARCH TRACK PAPERS - ORAL Title & Authors NetCycle: Collective Evolution Inference in Heterog ...
随机推荐
- mac下配置adb
博主近期搞了台macbook用,搞android开发爽多了.程序编译那个速度确实让我感到非常爽.尤其是在之前用windows时动辄启动eclipse几分钟,编译又花非常久的情况下,可是用了mac发现a ...
- node-webkit 开发环境搭建
node-webkit支持的操作系统类型: Linunx:32bit / 64bit Windows: win32 Mac:32bit,10.7+ 开发环境 1,根据自己的操作系统下载响应的nw二进制 ...
- SpringCloud系列十三:Feign对继承、压缩、日志的支持以及构造多参数请求
1. 回顾 上文讲解了手动创建Feign,比默认的使用更加灵活. 本文将讲解Feign对继承.压缩的支持以及日志和多参数请求的构造等. 2. Feign对继承的支持 Feign支持继承.使用继承,可将 ...
- HDU - 5017 Ellipsoid(模拟退火法)
Problem Description Given a 3-dimension ellipsoid(椭球面) your task is to find the minimal distance bet ...
- DataUml Design 介绍11 - DataUML 1.5版本功能(支持无Oracle客户端连接,有图有真相)
DataUML Design1.5版本主要更新内容包括: 1.优化数据库登录界面: 2.查询分析器智能提示: 3.优化数据库浏览插件,数据库登录组件,支持历史记录缓存: 4.支持无Oracle客户端连 ...
- DataUml Design 介绍9 - DataUML 1.3版本功能(查询分析器功能等)
DataUML 1.3 (下载)主要更新内容如下: 1.增加查询分析器功能: 2.增加打开历史文件记录功能: 3.修改查询对象功能: 4.增加显示对象长度功能: 5.增加配置显示表字段功能: 6.增加 ...
- 机器人的运动范围 剑指offer66题
include "stdafx.h" #include<vector> #include<algorithm> #include<string> ...
- 【转】Monkey测试5-运行中停止monkey
停止monkey自动测试步骤: 1.ps命令 查找uiautomator的进程 打开cmd命令行窗口 输入: adb shell ; ps | grep monkey; 返回来的第一个数字,即是mo ...
- svn版本库目录结构
该文是svn源代码分析系列文章服务端架构中的一篇,主要描述svn服务端版本库数据存储目录结构,并且对这些文件以及目录的作用进行简单分析.使用“svnmadin create”命令创建初始化版本库后 ...
- Matlab命令行版打开
matlab -nosplash -nodesktop 运行文件:matlab -nodesktop -nosplash -r file