[HAOI2012] 容易题[母函数]
794. [HAOI2012] 容易题
★★☆ 输入文件:easy.in
输出文件:easy.out
简单对比
时间限制:1 s 内存限制:128 MB
- /*
- 题解抄的别人的。表示对母函数一脸懵逼。。。
- 首先考虑暴力…(20分~~)…然后你会得到一堆式子,从前往后合并同类项,可以发现顺序无所谓,可以先算m-1个的再算m个的。
- 然后显然答案就是π(i=1~m)Σ(所有可行的)a[i]
- 虽然m很大,但是k只有1e5,所有许多位置可以全选,把没有限制的部分直接一起算就行了
- */
- #include<cstdio>
- #include<iostream>
- #include<algorithm>
- #define pir pair<int,int>
- using namespace std;
- typedef long long ll;
- const int N=1e5+;
- const int mod=1e9+;
- int n,m,val,tn,tmp;
- pir f[N];
- inline int read(){
- int x=,f=;char ch=getchar();
- while(ch<'0'||ch>'9'){if(ch=='-')f=-;ch=getchar();}
- while(ch>='0'&&ch<='9'){x=x*+ch-'0';ch=getchar();}
- return x*f;
- }
- ll fpow(ll a,ll p){
- ll res=;
- for(;p;p>>=,a=a*a%mod) if(p&) res=res*a%mod;
- return res;
- }
- int main(){
- freopen("easy.in","r",stdin);
- freopen("easy.out","w",stdout);
- val=read();n=read();m=read();
- int all=1LL*val*(val+)/%mod;
- int ans=;
- for(int i=,a,b;i<=m;i++) a=read(),b=read(),f[i]=make_pair(a,b);
- sort(f+,f+m+);
- m=unique(f+,f+m+)-(f+);
- for(int i=;i<=m;i++){
- tmp+=f[i].second;
- if(i==m||f[i].first!=f[i+].first){
- ans=1LL*ans*(all-tmp)%mod;
- tmp=;tn++;
- }
- }
- ans=1LL*ans*fpow(all,n-tn)%mod;
- if(ans<) ans+=mod;
- printf("%d",ans);
- return ;
- }
第一题:容易题(easy)
时间限制:1秒
输入:easy.in
输出:easy.out
问题描述
为了使得大家高兴,小Q特意出个自认为的简单题(easy)来满足大家,这道简单题是描述如下:
有一个数列A已知对于所有的A[i]都是1~n的自然数,并且知道对于一些A[i]不能取哪些值,我们定义一个数列的积为该数列所有元素的乘积,要求你求出所有可能的数列的积的和 mod 1000000007的值,是不是很简单呢?呵呵!
输入
第一行三个整数n,m,k分别表示数列元素的取值范围,数列元素个数,以及已知的限制条数。
接下来k行,每行两个正整数x,y表示A[x]的值不能是y。
输出
一行一个整数表示所有可能的数列的积的和对1000000007取模后的结果。如果一个合法的数列都没有,答案输出0。
样例输入
3 4 5
1 1
1 1
2 2
2 3
4 3
样例输出
90
样例解释
A[1]不能取1
A[2]不能去2、3
A[4]不能取3
所以可能的数列有以下12种
数列 积
2 1 1 1 2
2 1 1 2 4
2 1 2 1 4
2 1 2 2 8
2 1 3 1 6
2 1 3 2 12
3 1 1 1 3
3 1 1 2 6
3 1 2 1 6
3 1 2 2 12
3 1 3 1 9
3 1 3 2 18
数据范围
30%的数据n<=4,m<=10,k<=10
另有20%的数据k=0
70%的数据n<=1000,m<=1000,k<=1000
100%的数据 n<=109,m<=109,k<=105,1<=y<=n,1<=x<=m
[HAOI2012] 容易题[母函数]的更多相关文章
- BZOJ 2751: [HAOI2012]容易题(easy) 数学
2751: [HAOI2012]容易题(easy) 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=2751 Description 为了使 ...
- BZOJ2751: [HAOI2012]容易题(easy)
2751: [HAOI2012]容易题(easy) Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 872 Solved: 377[Submit][S ...
- BZOJ 2751: [HAOI2012]容易题(easy)( )
有限制的最多就K个, 所以我们处理一下这K个就行了. 其他可以任选, 贡献都是∑i (1≤i≤N), 用快速幂. ------------------------------------------- ...
- 2751: [HAOI2012]容易题(easy)
2751: [HAOI2012]容易题(easy) Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1087 Solved: 477[Submit][ ...
- 【bzoj2751】[HAOI2012]容易题(easy) 数论-快速幂
[bzoj2751][HAOI2012]容易题(easy) 先考虑k=0的情况 那么第一个元素可能为[1,n] 如果序列长度为m-1时的答案是ans[m-1] 那么合并得 然后同理答案就是 k很小 而 ...
- 洛谷 P2220 [HAOI2012]容易题 数论
洛谷 P2220 [HAOI2012]容易题 题目描述 为了使得大家高兴,小Q特意出个自认为的简单题(easy)来满足大家,这道简单题是描述如下: 有一个数列A已知对于所有的A[i]都是1~n的自然数 ...
- hdu2079 选课时间(题目已修改,注意读题) 母函数
计算数的和的种类,母函数裸题 #include<stdio.h> #include<string.h> ],c2[],a,b; int main(){ int T; while ...
- [HAOI2012] 容易题
有一个数列A已知对于所有的A[i]都是1~n的自然数,并且知道对于一些A[i]不能取哪些值,我们定义一个数列的积为该数列所有元素的乘积,要求你求出所有可能的数列的积的和 mod 1000000007的 ...
- BZOJ2751 [HAOI2012]容易题
Description 为了使得大家高兴,小Q特意出个自认为的简单题(easy)来满足大家,这道简单题是描述如下: 有一个数列A已知对于所有的A[i]都是1~n的自然数,并且知道对于一些A[i]不能取 ...
随机推荐
- 淘宝JAVA中间件Diamond
以下是转载自网上资料,但是根据步骤可以搭建出diamond配置中心服务器. 项目中需要用到diamond的理由是, 项目中使用了很多定时任务和异步任务.而且这些定时任务和异步任务都是分布式的安排在多个 ...
- maven 插件之 AutoConfig 工具使用笔记
AutoConfig 是一款 maven 插件,主要用于 Maven 项目打包使用.在我们的工作中,会将自己写的代码打成 jar 包或者 war 包发布到各种环境上.一般地,不用的环境所使用的数据库. ...
- 倍福TwinCAT(贝福Beckhoff)常见问题(FAQ)-如何配置虚拟轴 TC3
在Motion上添加一个NC Task 在Axis上右击添加一个轴,类型为Continuous Axis 在PLC上右击添加新项,然后添加一个PLC项目 在引用中添加TC2_MC2的库引用 ...
- python——数据结构之单链表的实现
链表的定义: 链表(linked list)是由一组被称为结点的数据元素组成的数据结构,每个结点都包含结点本身的信息和指向下一个结点的地址.由于每个结点都包含了可以链接起来的地址 信息,所以用一个变量 ...
- 在Gridview中输入小数时报对于int32 太大或太小
使用Datagridview绑定Access数据库,对于数字类型的数据输入小数后报以下错误: 根据错误判断应该是自动检测该栏位应该输入int32类型的数值.我在数据库中定义了保留4位小数,为什么还被转 ...
- java之方法的重写
方法的重写: 1.在子类中可以根据需要对从基类中继承来的方法进行重写. 2.重写的方法和被重写的方法必须具有相同方法名称.参数列表和返回类型. 3.重写方法不能使用比被重写的方法更严格的访问权限. 程 ...
- requireJS目录
前言 对于像我这种requireJS初学者而言,requireJS最难理解的部分应该是它的路径问题.晚上随便折腾了一下,算是稍微理清了这个目录问题吧. requireJS学习网址:requireJS中 ...
- linux 单机跨进程通信
一般来说通过网络通信(比如tcp,udp)或者共享内存的方式肯定可以实现跨进程通信,但现在这里要说的是比较偏但实用的几个方法:利用unix域通信(普通网络连接),利用unix域通信(socketpai ...
- ubuntu14.04 flash driver 安装
直接将14.04镜像直接放到flash driver 中 然后在bios设置flash driver 优先启动 然后格出一块盘给ubuntu 安装使用 按操作要求一路点下去就可以,记得选windows ...
- smali语句类的静态成员查看,invoke-virtual、invoke-direct、invoke-super解释
smali举例: .class public Lcom/dataviz/dxtg/common/android/DocsToGoApp; .super Landroid/app/Application ...