[HAOI2012] 容易题[母函数]
794. [HAOI2012] 容易题
★★☆ 输入文件:easy.in
输出文件:easy.out
简单对比
时间限制:1 s 内存限制:128 MB
- /*
- 题解抄的别人的。表示对母函数一脸懵逼。。。
- 首先考虑暴力…(20分~~)…然后你会得到一堆式子,从前往后合并同类项,可以发现顺序无所谓,可以先算m-1个的再算m个的。
- 然后显然答案就是π(i=1~m)Σ(所有可行的)a[i]
- 虽然m很大,但是k只有1e5,所有许多位置可以全选,把没有限制的部分直接一起算就行了
- */
- #include<cstdio>
- #include<iostream>
- #include<algorithm>
- #define pir pair<int,int>
- using namespace std;
- typedef long long ll;
- const int N=1e5+;
- const int mod=1e9+;
- int n,m,val,tn,tmp;
- pir f[N];
- inline int read(){
- int x=,f=;char ch=getchar();
- while(ch<'0'||ch>'9'){if(ch=='-')f=-;ch=getchar();}
- while(ch>='0'&&ch<='9'){x=x*+ch-'0';ch=getchar();}
- return x*f;
- }
- ll fpow(ll a,ll p){
- ll res=;
- for(;p;p>>=,a=a*a%mod) if(p&) res=res*a%mod;
- return res;
- }
- int main(){
- freopen("easy.in","r",stdin);
- freopen("easy.out","w",stdout);
- val=read();n=read();m=read();
- int all=1LL*val*(val+)/%mod;
- int ans=;
- for(int i=,a,b;i<=m;i++) a=read(),b=read(),f[i]=make_pair(a,b);
- sort(f+,f+m+);
- m=unique(f+,f+m+)-(f+);
- for(int i=;i<=m;i++){
- tmp+=f[i].second;
- if(i==m||f[i].first!=f[i+].first){
- ans=1LL*ans*(all-tmp)%mod;
- tmp=;tn++;
- }
- }
- ans=1LL*ans*fpow(all,n-tn)%mod;
- if(ans<) ans+=mod;
- printf("%d",ans);
- return ;
- }
第一题:容易题(easy)
时间限制:1秒
输入:easy.in
输出:easy.out
问题描述
为了使得大家高兴,小Q特意出个自认为的简单题(easy)来满足大家,这道简单题是描述如下:
有一个数列A已知对于所有的A[i]都是1~n的自然数,并且知道对于一些A[i]不能取哪些值,我们定义一个数列的积为该数列所有元素的乘积,要求你求出所有可能的数列的积的和 mod 1000000007的值,是不是很简单呢?呵呵!
输入
第一行三个整数n,m,k分别表示数列元素的取值范围,数列元素个数,以及已知的限制条数。
接下来k行,每行两个正整数x,y表示A[x]的值不能是y。
输出
一行一个整数表示所有可能的数列的积的和对1000000007取模后的结果。如果一个合法的数列都没有,答案输出0。
样例输入
3 4 5
1 1
1 1
2 2
2 3
4 3
样例输出
90
样例解释
A[1]不能取1
A[2]不能去2、3
A[4]不能取3
所以可能的数列有以下12种
数列 积
2 1 1 1 2
2 1 1 2 4
2 1 2 1 4
2 1 2 2 8
2 1 3 1 6
2 1 3 2 12
3 1 1 1 3
3 1 1 2 6
3 1 2 1 6
3 1 2 2 12
3 1 3 1 9
3 1 3 2 18
数据范围
30%的数据n<=4,m<=10,k<=10
另有20%的数据k=0
70%的数据n<=1000,m<=1000,k<=1000
100%的数据 n<=109,m<=109,k<=105,1<=y<=n,1<=x<=m
[HAOI2012] 容易题[母函数]的更多相关文章
- BZOJ 2751: [HAOI2012]容易题(easy) 数学
2751: [HAOI2012]容易题(easy) 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=2751 Description 为了使 ...
- BZOJ2751: [HAOI2012]容易题(easy)
2751: [HAOI2012]容易题(easy) Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 872 Solved: 377[Submit][S ...
- BZOJ 2751: [HAOI2012]容易题(easy)( )
有限制的最多就K个, 所以我们处理一下这K个就行了. 其他可以任选, 贡献都是∑i (1≤i≤N), 用快速幂. ------------------------------------------- ...
- 2751: [HAOI2012]容易题(easy)
2751: [HAOI2012]容易题(easy) Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1087 Solved: 477[Submit][ ...
- 【bzoj2751】[HAOI2012]容易题(easy) 数论-快速幂
[bzoj2751][HAOI2012]容易题(easy) 先考虑k=0的情况 那么第一个元素可能为[1,n] 如果序列长度为m-1时的答案是ans[m-1] 那么合并得 然后同理答案就是 k很小 而 ...
- 洛谷 P2220 [HAOI2012]容易题 数论
洛谷 P2220 [HAOI2012]容易题 题目描述 为了使得大家高兴,小Q特意出个自认为的简单题(easy)来满足大家,这道简单题是描述如下: 有一个数列A已知对于所有的A[i]都是1~n的自然数 ...
- hdu2079 选课时间(题目已修改,注意读题) 母函数
计算数的和的种类,母函数裸题 #include<stdio.h> #include<string.h> ],c2[],a,b; int main(){ int T; while ...
- [HAOI2012] 容易题
有一个数列A已知对于所有的A[i]都是1~n的自然数,并且知道对于一些A[i]不能取哪些值,我们定义一个数列的积为该数列所有元素的乘积,要求你求出所有可能的数列的积的和 mod 1000000007的 ...
- BZOJ2751 [HAOI2012]容易题
Description 为了使得大家高兴,小Q特意出个自认为的简单题(easy)来满足大家,这道简单题是描述如下: 有一个数列A已知对于所有的A[i]都是1~n的自然数,并且知道对于一些A[i]不能取 ...
随机推荐
- hibernate学习系列-----(8)hibernate对集合属性的操作之Collectioon集合篇
度过短暂的周末,又到了周一,继续轻松而愉快的学习,紧承以前的学习,继续了解hibernate对集合的操作学习之旅! 在上一篇中,就已经提前说过,这一篇的内容以及下一篇的内容会有很多相似之处,这里就不再 ...
- Python 提取Twitter tweets中的元素(包括text, screen names, hashtags)
CODE: #!/usr/bin/python # -*- coding: utf-8 -*- ''' Created on 2014-7-1 @author: guaguastd @name: ex ...
- Data truncation: Data too long for column
是字符集问题引起的,用show full fields from + 表名就可以看出你的列的编码格式把它改成GBK或者GB2312.uTF-8.如果还不行的话,把你表的编码格式也改成上面的编码格式,我 ...
- Tomcat 5常用优化和配置
Tomcat 5常用优化和配置 1.JDK内存优化:Tomcat默认可以使用的内存为128MB,Windows下,在文件{tomcat_home}/bin/catalina.bat,Unix下,在文件 ...
- Easy UI datebox控件无法正常赋值
<input id="AcceptDetail_IssuingDate" class="easyui-datebox" data-options=&quo ...
- Visual Studio提示“无法启动IIS Express Web服务器”或者“无法连接Web服务器IIS Express ”的解决方法
解决办法:找到程序根目录,删除隐藏的.vs文件夹即可. 问题原因:一般是项目拷贝或者系统设置变更所造成的.
- PHP正则表达式教程
1.入门简介 在编写处理字符串的程序或网页时,经常会有查找符合某些复杂规则的字符串的需要.正则表达式就是用于描述这些规则的工具.换句话说,正则表达式就是记录文本规则的代码. 很可能你使用过Windo ...
- C#取调用堆栈StackTrace
Environment.StackTrace or System.Diagnostics.StackTrace if you need a more convienient (i.e. not str ...
- 辛星让mysql跑的更快第一节之优化的方向和数据库建模
近期计划写一套书目,也就是关于mysql的优化的.那么首先在博客上写写,然后整理成pdf的文档的形式,当然也期待各位的关注了.对于mysql的优化是一个比較大的话题.可优化的地方也非常多,大致想了一下 ...
- nginx源码学习_源码结构
nginx的优秀除了体现在程序结构以及代码风格上,nginx的源码组织也同样简洁明了,目录结构层次结构清晰,值得我们去学习.nginx的源码目录与nginx的模块化以及功能的划分是紧密结合,这也使得我 ...