Sherlock Holmes found a mysterious correspondence of two VIPs and made up his mind to read it. But there is a problem! The correspondence turned out to be encrypted. The detective tried really hard to decipher the correspondence, but he couldn't understand anything.

At last, after some thought, he thought of something. Let's say there is a word s, consisting of |s| lowercase Latin letters. Then for one operation you can choose a certain position p (1 ≤ p < |s|) and perform one of the following actions:

  • either replace letter sp with the one that alphabetically follows it and replace letter sp + 1 with the one that alphabetically precedes it;
  • or replace letter sp with the one that alphabetically precedes it and replace letter sp + 1 with the one that alphabetically follows it.

Let us note that letter "z" doesn't have a defined following letter and letter "a" doesn't have a defined preceding letter. That's why the corresponding changes are not acceptable. If the operation requires performing at least one unacceptable change, then such operation cannot be performed.

Two words coincide in their meaning iff one of them can be transformed into the other one as a result of zero or more operations.

Sherlock Holmes needs to learn to quickly determine the following for each word: how many words can exist that coincide in their meaning with the given word, but differs from the given word in at least one character? Count this number for him modulo 1000000007 (109 + 7).

Input

The input data contains several tests. The first line contains the only integer t (1 ≤ t ≤ 104) — the number of tests.

Next t lines contain the words, one per line. Each word consists of lowercase Latin letters and has length from 1 to 100, inclusive. Lengths of words can differ.

Output

For each word you should print the number of different other words that coincide with it in their meaning — not from the words listed in the input data, but from all possible words. As the sought number can be very large, print its value modulo 1000000007 (109 + 7).

Examples

Input
1
ab
Output
1
Input
1
aaaaaaaaaaa
Output
0
Input
2
ya
klmbfxzb
Output
24
320092793

题意:给定长度小于100的字符串,每次操作可以把相邻的字符对,一个+1,一个-1,但要保证所有字符在'a'到'z'范围里。求原字符串可以转化为多少种字符串。

思路:注意到相邻的一个+1,一个-1,之和是不变的,而且不难证明长度相同,之和相同的时候可以相互转化。所以对于对应长度、对应和,其种类是一定的,我们直接预处理出有多少种。dp[Len][sum]表示长度为Len的时候之和为sum的种类数。 避免讨论,我们把a-z对应为1-26,而不是0-25。

#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define ll long long
using namespace std;
const int maxn=;
const int Mod=1e9+;
int dp[maxn][maxn*],sum[maxn]; char c[maxn];
void solve()
{
dp[][]=;
rep(i,,){
rep(j,i,i*){
rep(p,,){
if(j-p>=) (dp[i][j]+=dp[i-][j-p])%=Mod;
}
}
}
}
int main()
{
int T,N;
solve();
scanf("%d",&T);
while(T--){
scanf("%s",c+); N=strlen(c+);
rep(i,,N) sum[i]=sum[i-]+c[i]-'a'+;
printf("%d\n",(dp[N][sum[N]]+Mod-)%Mod);
}
return ;
}

CodeForces - 156C:Cipher (不错的DP)的更多相关文章

  1. [BZOJ 3625] [Codeforces 438E] 小朋友的二叉树 (DP+生成函数+多项式开根+多项式求逆)

    [BZOJ 3625] [Codeforces 438E] 小朋友的二叉树 (DP+生成函数+多项式开根+多项式求逆) 题面 一棵二叉树的所有点的点权都是给定的集合中的一个数. 让你求出1到m中所有权 ...

  2. codeforces 721C (拓排 + DP)

    题目链接:http://codeforces.com/contest/721/problem/C 题意:从1走到n,问在时间T内最多经过多少个点,按路径顺序输出. 思路:比赛的时候只想到拓排然后就不知 ...

  3. codeforces 711C Coloring Trees(DP)

    题目链接:http://codeforces.com/problemset/problem/711/C O(n^4)的复杂度,以为会超时的 思路:dp[i][j][k]表示第i棵数用颜色k涂完后bea ...

  4. codeforces 55D - Beautiful numbers(数位DP+离散化)

    D. Beautiful numbers time limit per test 4 seconds memory limit per test 256 megabytes input standar ...

  5. Codeforces 543D. Road Improvement (树dp + 乘法逆元)

    题目链接:http://codeforces.com/contest/543/problem/D 给你一棵树,初始所有的边都是坏的,要你修复若干边.指定一个root,所有的点到root最多只有一个坏边 ...

  6. Codeforces 467C. George and Job (dp)

    题目链接:http://codeforces.com/contest/467/problem/C 求k个不重叠长m的连续子序列的最大和. dp[i][j]表示第i个数的位置个序列的最大和. 前缀和一下 ...

  7. Codeforces 711 C. Coloring Trees (dp)

    题目链接:http://codeforces.com/problemset/problem/711/C 给你n棵树,m种颜色,k是指定最后的完美值.接下来一行n个数 表示1~n树原本的颜色,0的话就是 ...

  8. Codeforces 706 C. Hard problem (dp)

    题目链接:http://codeforces.com/problemset/problem/706/C 给你n个字符串,可以反转任意一个字符串,反转每个字符串都有其对应的花费ci. 经过操作后是否能满 ...

  9. CodeForces 163A Substring and Subsequence dp

    A. Substring and Subsequence 题目连接: http://codeforces.com/contest/163/problem/A Description One day P ...

随机推荐

  1. PAT 天梯赛 L2-021. 点赞狂魔 【水】

    题目链接 https://www.patest.cn/contests/gplt/L2-021 题意 给出一个若干个人名,后面给出点赞的总数,以及每个赞的标签类型,输出前三个点赞狂魔,按标签类型不同数 ...

  2. iOS Autolayout 在tableView scrollView 适用 学习

    1  如何自动适应cell的高度 autolayout  里面 使用 systemLayoutSizeFittingSize 方法 (系统通过 已知的完整的Constraints和view的属性来计算 ...

  3. ggplot2学习总结

  4. Docker容器技术-基础与架构

    一.什么是容器 容器是对应用程序及其依赖关系的封装. 1.容器的优点 容器与主机的操作系统共享资源,提高了效率,性能损耗低 容器具有可移植性 容器是轻量的,可同时运行数十个容器,模拟分布式系统 不必花 ...

  5. php数组函数-array_pop()

    array_pop()函数删除数组中的最后一个元素(出栈). array_pop(array) array:必需.规定数组 返回值:返回数组的最后一个值.如果数组是空,或者不是一个数组,将返回NULL ...

  6. iOS_Quartz 2D绘图

    目  录: 一.基础知识掌握 二.Quartz 2D绘图基础:CGContextRef实现简单地绘制图形 三.CGContextRef实现文字.图片.基于路径的图形绘制 四.在内存中绘制位图 五.添加 ...

  7. java中如何将非整数保留到小数点后指定的位数

  8. XXL-Job分布式任务调度

    分布式情况下定时任务会出现哪些问题? 分布式集群的情况下,怎么保证定时任务不被重复执行 分布式定时任务解决方案 ①使用zookeeper实现分布式锁 缺点(需要创建临时节点.和事件通知不易于扩展) ② ...

  9. Spring插件的安装与卸载---笔记

    Spring插件的安装 1.在eclipse中选择工具菜单Help--->Install New Software选项 2.点击Add, 3.选择插件地址或输入网址,点击  OK  . http ...

  10. PAT1027. Colors in Mars (20)

    #include <iostream> using namespace std; string tbl="0123456789ABC"; int main() { in ...