LeetCode 480. Sliding Window Median
原题链接在这里:https://leetcode.com/problems/sliding-window-median/?tab=Description
题目:
Median is the middle value in an ordered integer list. If the size of the list is even, there is no middle value. So the median is the mean of the two middle value.
Examples:
[2,3,4] , the median is 3
[2,3], the median is (2 + 3) / 2 = 2.5
Given an array nums, there is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves right by one position. Your job is to output the median array for each window in the original array.
For example,
Given nums = [1,3,-1,-3,5,3,6,7], and k = 3.
Window position Median
--------------- -----
[1 3 -1] -3 5 3 6 7 1
1 [3 -1 -3] 5 3 6 7 -1
1 3 [-1 -3 5] 3 6 7 -1
1 3 -1 [-3 5 3] 6 7 3
1 3 -1 -3 [5 3 6] 7 5
1 3 -1 -3 5 [3 6 7] 6
Therefore, return the median sliding window as [1,-1,-1,3,5,6].
Note:
You may assume k is always valid, ie: 1 ≤ k ≤ input array's size for non-empty array.
题解:
使用minHeap和maxHeap来维护median. 为了方便,这里始终保持minHeap.size() == maxHeap.size() 或 minHeap.size() = maxHeap.size()+1.
所以最开始两个heap都为空时,加到minHeap中.
取median时若size相同就两边peek求和除以2. 若size不同,那么肯定minHeap size大, minHeap peek下就是median.
remove时,看要remove的数nums[i-k], 若比median小,从maxHeap中remove. 不然从minHeap中remove.
Note: 两遍peek求和时注意overflow.
Remove时如果出现小数, 多半会从小的这一侧remove, 也就是maxHeap中remove. 所以添加时应该尽量向大的这一侧添加. 但添加时检测要用!maxHeap.isEmpty()&&maxHeap.peek()>nums[i]限制小的一侧添加, 而不用minHeap.isEmpty() || minHeap.peek()<nums[i]胡乱往大的一侧添加. 因为有可能minHeap刚才经过remove已经空了, 若出现个很小的数就错误的加进了minHeap中.
Time Complexity: O(nk), n = nums.length. 对于minHeap 和 maxHeap来说每个元素add, remove O(1)次. remove(target) takes O(k).
Space: O(k).
AC java:
public class Solution {
public double[] medianSlidingWindow(int[] nums, int k) {
if(nums == null || nums.length == 0 || k <= 0){
return new double[0];
}
PriorityQueue<Integer> minHeap = new PriorityQueue<Integer>();
PriorityQueue<Integer> maxHeap = new PriorityQueue<Integer>(Collections.reverseOrder());
int len = nums.length;
double [] res = new double[len-k+1];
for(int i = 0; i<=len; i++){
if(i>=k){
if(minHeap.size() == maxHeap.size()){
res[i-k] = ((double)minHeap.peek() + (double)maxHeap.peek())/2.0;
}else{
res[i-k] = minHeap.peek();
}
if(nums[i-k] < res[i-k]){
maxHeap.remove(nums[i-k]);
}else{
minHeap.remove(nums[i-k]);
}
}
if(i<len){
if(!maxHeap.isEmpty() && maxHeap.peek()>nums[i]){
maxHeap.offer(nums[i]);
}else{
minHeap.offer(nums[i]);
}
while(maxHeap.size() > minHeap.size()){
minHeap.offer(maxHeap.poll());
}
while(minHeap.size() - maxHeap.size() > 1){
maxHeap.offer(minHeap.poll());
}
}
}
return res;
}
}
类似Find Median from Data Stream.
LeetCode 480. Sliding Window Median的更多相关文章
- 480 Sliding Window Median 滑动窗口中位数
详见:https://leetcode.com/problems/sliding-window-median/description/ C++: class Solution { public: ve ...
- 【LeetCode】480. 滑动窗口中位数 Sliding Window Median(C++)
作者: 负雪明烛 id: fuxuemingzhu 公众号: 每日算法题 本文关键词:LeetCode,力扣,算法,算法题,滑动窗口,中位数,multiset,刷题群 目录 题目描述 题目大意 解题方 ...
- [LeetCode] Sliding Window Median 滑动窗口中位数
Median is the middle value in an ordered integer list. If the size of the list is even, there is no ...
- Leetcode: Sliding Window Median
Median is the middle value in an ordered integer list. If the size of the list is even, there is no ...
- Sliding Window Median LT480
Median is the middle value in an ordered integer list. If the size of the list is even, there is no ...
- [LeetCode] 239. Sliding Window Maximum 滑动窗口最大值
Given an array nums, there is a sliding window of size k which is moving from the very left of the a ...
- LeetCode题解-----Sliding Window Maximum
题目描述: Given an array nums, there is a sliding window of size k which is moving from the very left of ...
- [leetcode]239. Sliding Window Maximum滑动窗口最大值
Given an array nums, there is a sliding window of size k which is moving from the very left of the a ...
- 滑动窗口的中位数 · Sliding Window Median
[抄题]: 给定一个包含 n 个整数的数组,和一个大小为 k 的滑动窗口,从左到右在数组中滑动这个窗口,找到数组中每个窗口内的中位数.(如果数组个数是偶数,则在该窗口排序数字后,返回第 N/2 个数字 ...
随机推荐
- 【转】Linux查看物理CPU个数、核数、逻辑CPU个数
# 总核数 = 物理CPU个数 X 每颗物理CPU的核数 # 总逻辑CPU数 = 物理CPU个数 X 每颗物理CPU的核数 X 超线程数 # 查看物理CPU个数cat /proc/cpuinfo| g ...
- css系列(5)css的运用(一)
从本节开始介绍css配合html可以达到的一些效果. (1)导航栏: <html> <head> <title>示例5.1</title> ...
- MATLAB画图设置长宽。并高清复制
- linux驱动的异步通知(kill_fasync,fasync)---- 驱动程序向应用程序发送信号
应用程序 #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include < ...
- bowtie2用法
bowtie2的功能:短序列的比对 用法:bowtie2 [options]* -x <bt2-idx> {-1 <m1> -2 <m2> | -U <r&g ...
- python:字典的方法
1.查找字典中的key对应的值和key是否存在(get,has_key)dict.get(key, default = None) :返回字典中key对应的值,若key不存在字典中,则返回defaul ...
- 10个超有趣的linux命令
本文展示了 10 个有趣的 Linux 动态命令,这些命令和实用功能无关,仅供娱乐!看完此文,你会对 Linux 有个全新的认识,谁说 IT 男就没有屌丝娱乐的一面呢?还等什么,就让我们开始看文章吧~ ...
- SYN blood攻击
SYN Flood (SYN洪水) 是种典型的DoS (Denial of Service,拒绝服务) 攻击.效果就是服务器TCP连接资源耗尽,停止响应正常的TCP连接请求. 说到原理,还得从TCP如 ...
- .NET 中如何判断文件与目录
FileInfo fileInfo = new FileInfo(pth); if ((fileInfo.Attributes & FileAttributes.Directory) != 0 ...
- 常用 GDB 命令中文速览
转自:https://linux.cn/article-8900-1.html?utm_source=index&utm_medium=moremore 目录 break -- 在指定的行或函 ...