原题链接在这里:https://leetcode.com/problems/sliding-window-median/?tab=Description

题目:

Median is the middle value in an ordered integer list. If the size of the list is even, there is no middle value. So the median is the mean of the two middle value.

Examples:

[2,3,4] , the median is 3

[2,3], the median is (2 + 3) / 2 = 2.5

Given an array nums, there is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves right by one position. Your job is to output the median array for each window in the original array.

For example,
Given nums = [1,3,-1,-3,5,3,6,7], and k = 3.

Window position                Median
--------------- -----
[1 3 -1] -3 5 3 6 7 1
1 [3 -1 -3] 5 3 6 7 -1
1 3 [-1 -3 5] 3 6 7 -1
1 3 -1 [-3 5 3] 6 7 3
1 3 -1 -3 [5 3 6] 7 5
1 3 -1 -3 5 [3 6 7] 6

Therefore, return the median sliding window as [1,-1,-1,3,5,6].

Note: 
You may assume k is always valid, ie: 1 ≤ k ≤ input array's size for non-empty array.

题解:

使用minHeap和maxHeap来维护median. 为了方便,这里始终保持minHeap.size() == maxHeap.size() 或 minHeap.size() = maxHeap.size()+1.

所以最开始两个heap都为空时,加到minHeap中.

取median时若size相同就两边peek求和除以2. 若size不同,那么肯定minHeap size大, minHeap peek下就是median.

remove时,看要remove的数nums[i-k], 若比median小,从maxHeap中remove. 不然从minHeap中remove.

Note: 两遍peek求和时注意overflow.

Remove时如果出现小数, 多半会从小的这一侧remove, 也就是maxHeap中remove. 所以添加时应该尽量向大的这一侧添加. 但添加时检测要用!maxHeap.isEmpty()&&maxHeap.peek()>nums[i]限制小的一侧添加, 而不用minHeap.isEmpty() || minHeap.peek()<nums[i]胡乱往大的一侧添加. 因为有可能minHeap刚才经过remove已经空了, 若出现个很小的数就错误的加进了minHeap中.

Time Complexity: O(nk), n = nums.length. 对于minHeap 和 maxHeap来说每个元素add, remove O(1)次. remove(target) takes O(k).

Space: O(k).

AC java:

 public class Solution {
public double[] medianSlidingWindow(int[] nums, int k) {
if(nums == null || nums.length == 0 || k <= 0){
return new double[0];
} PriorityQueue<Integer> minHeap = new PriorityQueue<Integer>();
PriorityQueue<Integer> maxHeap = new PriorityQueue<Integer>(Collections.reverseOrder()); int len = nums.length;
double [] res = new double[len-k+1];
for(int i = 0; i<=len; i++){
if(i>=k){
if(minHeap.size() == maxHeap.size()){
res[i-k] = ((double)minHeap.peek() + (double)maxHeap.peek())/2.0;
}else{
res[i-k] = minHeap.peek();
}
if(nums[i-k] < res[i-k]){
maxHeap.remove(nums[i-k]);
}else{
minHeap.remove(nums[i-k]);
}
}
if(i<len){
if(!maxHeap.isEmpty() && maxHeap.peek()>nums[i]){
maxHeap.offer(nums[i]);
}else{
minHeap.offer(nums[i]);
}
while(maxHeap.size() > minHeap.size()){
minHeap.offer(maxHeap.poll());
}
while(minHeap.size() - maxHeap.size() > 1){
maxHeap.offer(minHeap.poll());
}
}
}
return res;
}
}

类似Find Median from Data Stream.

LeetCode 480. Sliding Window Median的更多相关文章

  1. 480 Sliding Window Median 滑动窗口中位数

    详见:https://leetcode.com/problems/sliding-window-median/description/ C++: class Solution { public: ve ...

  2. 【LeetCode】480. 滑动窗口中位数 Sliding Window Median(C++)

    作者: 负雪明烛 id: fuxuemingzhu 公众号: 每日算法题 本文关键词:LeetCode,力扣,算法,算法题,滑动窗口,中位数,multiset,刷题群 目录 题目描述 题目大意 解题方 ...

  3. [LeetCode] Sliding Window Median 滑动窗口中位数

    Median is the middle value in an ordered integer list. If the size of the list is even, there is no ...

  4. Leetcode: Sliding Window Median

    Median is the middle value in an ordered integer list. If the size of the list is even, there is no ...

  5. Sliding Window Median LT480

    Median is the middle value in an ordered integer list. If the size of the list is even, there is no ...

  6. [LeetCode] 239. Sliding Window Maximum 滑动窗口最大值

    Given an array nums, there is a sliding window of size k which is moving from the very left of the a ...

  7. LeetCode题解-----Sliding Window Maximum

    题目描述: Given an array nums, there is a sliding window of size k which is moving from the very left of ...

  8. [leetcode]239. Sliding Window Maximum滑动窗口最大值

    Given an array nums, there is a sliding window of size k which is moving from the very left of the a ...

  9. 滑动窗口的中位数 · Sliding Window Median

    [抄题]: 给定一个包含 n 个整数的数组,和一个大小为 k 的滑动窗口,从左到右在数组中滑动这个窗口,找到数组中每个窗口内的中位数.(如果数组个数是偶数,则在该窗口排序数字后,返回第 N/2 个数字 ...

随机推荐

  1. VMWare中安装windowsXP遇到的问题

    XP系统安装 1.安装Windows和安装linux不一样,创建虚拟机完成后Linux自动根据硬盘进行系统安装,不需要提前分区.而windows必须进行提前分区,这个分区是在虚拟磁盘上完成的,就是你创 ...

  2. java CountDownLatch 控制异步和同步

    应用场景举例: 执行A项目的方法,需要调用B项目.C项目.D项目的接口方法. 需求: 异步调用B.C.D项目的接口方法,且每个接口都调用结束后,A项目的方法才可以结束. 注:如果需要获取接口返回结果, ...

  3. github资源下载速度慢的解决办法

    xx-net:https://github.com/XX-net/XX-Net

  4. OS路径模块命令

    os.remove():删除指定文件os.rmdir():删除指定目录os.mkdir():创建单级目录os.makedirs():创建多级目录os.listdir(dirname):列出dirnam ...

  5. CentOS 6.5下Redmine的安装配置

    首先引用百度介绍下redmine: Redmine是用Ruby开发的基于web的项目管理软件,是用ROR框架开发的一套跨平台项目管理系统,据说是源于Basecamp的ror版而来,支持多种数据库,有不 ...

  6. MySQL-LRU_List Free_List Flush_List

    关于 LRU_List ,Free_List,Flush_List的介绍:   LRU算法:(Latest Recent Used)最近最少使用      数据库的缓冲池通过LRU算法来进行管理.   ...

  7. Could not reserve enough space for object heap解决办法

    Centos6.4  Jdk1.6 1.在终端输入Java命令报错 [root@localhost local]# java Error occurred during initialization ...

  8. Linux自定义别名alias重启失效问题

    Linux上的别名功能非常方便,例如ll可以显示文件列表的长信息,但是却不是以human能读懂的方式显示,所以我尝试直接在命令行中自定义一个别名: alisa lk='ls -lh' 然后lk就能正常 ...

  9. sqlserver的疑难杂症解析

    1.电脑修改ip后ssms通过ip访问失败 通过计算机名可以访问成功,但通过修改后的ip访问却失败了! 解决方法:打开Sql Server Configuration Manager -> SQ ...

  10. CentOS 7(64位) 下Docker的安装

    系统要求是64位,内核版本至少3.10. 首先添加yum软件源: 之后更新yum软件源缓存,并安装docker-engine 查看docker 版本: Cannot connect to the Do ...