tensorflow 学习笔记-1
http://www.jianshu.com/p/e112012a4b2d 参考的网站
-----------------------------------------------------------------
import tensorflow as tf
import numpy as np
# 添加层
def add_layer(inputs, in_size, out_size, activation_function=None):
# add one more layer and return the output of this layer
Weights = tf.Variable(tf.random_normal([in_size, out_size]))
biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
Wx_plus_b = tf.matmul(inputs, Weights) + biases
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
return outputs
# 1.训练的数据
# Make up some real data
# 产生-1到1的总共300个间隔平均的数据
x_data = np.linspace(-1,1,300)[:, np.newaxis]
# 产生以0为中心的以高斯分布的数据,数量和x_data一样的数据
noise = np.random.normal(0, 0.05, x_data.shape)
# 对所有的X的数据平方-0.5+ noise
y_data = np.square(x_data) - 0.5 + noise
# 2.定义节点准备接收数据
# define placeholder for inputs to network
xs = tf.placeholder(tf.float32, [None, 1])
ys = tf.placeholder(tf.float32, [None, 1])
# 3.定义神经层:隐藏层和预测层
# add hidden layer 输入值是 xs,在隐藏层有 10 个神经元
l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu)
# add output layer 输入值是隐藏层 l1,在预测层输出 1 个结果
prediction = add_layer(l1, 10, 1, activation_function=None)
# 4.定义 loss 表达式
# the error between prediciton and real data
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),
reduction_indices=[1]))
# 5.选择 optimizer 使 loss 达到最小
# 这一行定义了用什么方式去减少 loss,学习率是 0.1
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
# important step 对所有变量进行初始化
init = tf.initialize_all_variables()
sess = tf.Session()
# 上面定义的都没有运算,直到 sess.run 才会开始运算
sess.run(init)
# 迭代 1000 次学习,sess.run optimizer
for i in range(1000):
# training train_step 和 loss 都是由 placeholder 定义的运算,所以这里要用 feed 传入参数
sess.run(train_step, feed_dict={xs: x_data, ys: y_data})
if i % 50 == 0:
# to see the step improvement
print(sess.run(loss, feed_dict={xs: x_data, ys: y_data}))
tensorflow 学习笔记-1的更多相关文章
- Tensorflow学习笔记2:About Session, Graph, Operation and Tensor
简介 上一篇笔记:Tensorflow学习笔记1:Get Started 我们谈到Tensorflow是基于图(Graph)的计算系统.而图的节点则是由操作(Operation)来构成的,而图的各个节 ...
- Tensorflow学习笔记2019.01.22
tensorflow学习笔记2 edit by Strangewx 2019.01.04 4.1 机器学习基础 4.1.1 一般结构: 初始化模型参数:通常随机赋值,简单模型赋值0 训练数据:一般打乱 ...
- Tensorflow学习笔记2019.01.03
tensorflow学习笔记: 3.2 Tensorflow中定义数据流图 张量知识矩阵的一个超集. 超集:如果一个集合S2中的每一个元素都在集合S1中,且集合S1中可能包含S2中没有的元素,则集合S ...
- TensorFlow学习笔记之--[compute_gradients和apply_gradients原理浅析]
I optimizer.minimize(loss, var_list) 我们都知道,TensorFlow为我们提供了丰富的优化函数,例如GradientDescentOptimizer.这个方法会自 ...
- 深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识
深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识 在tf第一个例子的时候需要很多预备知识. tf基本知识 香农熵 交叉熵代价函数cross-entropy 卷积神经网络 s ...
- 深度学习-tensorflow学习笔记(2)-MNIST手写字体识别
深度学习-tensorflow学习笔记(2)-MNIST手写字体识别超级详细版 这是tf入门的第一个例子.minst应该是内置的数据集. 前置知识在学习笔记(1)里面讲过了 这里直接上代码 # -*- ...
- tensorflow学习笔记(4)-学习率
tensorflow学习笔记(4)-学习率 首先学习率如下图 所以在实际运用中我们会使用指数衰减的学习率 在tf中有这样一个函数 tf.train.exponential_decay(learning ...
- tensorflow学习笔记(3)前置数学知识
tensorflow学习笔记(3)前置数学知识 首先是神经元的模型 接下来是激励函数 神经网络的复杂度计算 层数:隐藏层+输出层 总参数=总的w+b 下图为2层 如下图 w为3*4+4个 b为4* ...
- tensorflow学习笔记(2)-反向传播
tensorflow学习笔记(2)-反向传播 反向传播是为了训练模型参数,在所有参数上使用梯度下降,让NN模型在的损失函数最小 损失函数:学过机器学习logistic回归都知道损失函数-就是预测值和真 ...
- tensorflow学习笔记(1)-基本语法和前向传播
tensorflow学习笔记(1) (1)tf中的图 图中就是一个计算图,一个计算过程. 图中的constant是个常量 计 ...
随机推荐
- JavaScript实现自适应窗口大小的网页
<!DOCTYPE html> <html> <head> <meta http-equiv="content-type" content ...
- windows安装mysql教程2017最新
1.首先在mysql官网下载最新版mysql, 附上链接点击打开链接,根据你的系统型号选择对应的包下载,大约300多兆,版本号为5.7.19 下载完之后,解压缩,是一个标准的mysql文件 2.第二步 ...
- 【HackerRank】Sherlock and MiniMax
题目连接:Sherlock and MiniMax Watson gives Sherlock an array A1,A2...AN. He asks him to find an integer ...
- 【leetcode刷题笔记】Minimum Window Substring
Given a string S and a string T, find the minimum window in S which will contain all the characters ...
- Ubuntu16.04下编译android6.0源码
http://blog.csdn.net/cnliwy/article/details/52189349 作为一名合格的android开发人员,怎么能不会编译android源码呢!一定要来一次说编译就 ...
- 如何计算android设备的屏幕物理尺寸
https://segmentfault.com/q/1010000002794179 通过android提供的接口,我们可以获取到如下的信息:int densityDpi = mContext.ge ...
- 【转载】openwrt框架分析
文章出处:http://blog.csdn.net/kingvenll/article/details/27545221 这次讲讲openwrt的结构. 1. 代码上来看有几个重要目录package, ...
- PHP 最大化资源配置 Resource Limits 错误两则
报错信息1:PHP Fatal error: Allowed memory size of 25165824 bytes exhausted (tried to allocate 67108888 b ...
- linux文件系统实现原理简述【转】
本文转载自:https://blog.csdn.net/eleven_xiy/article/details/71249365 [摘要] [背景] [正文] [总结] 注意:请使用谷歌浏览器阅读( ...
- JMeter学习(十二)JMeter学习参数化User Defined Variables与User Parameters
相同点:二者都是进行参数化的. 一.User Defined Variables 1.添加方法:选择“线程组”,右键点击添加-Config Element-User Defined Variables ...