bzoj

luogu

sol

显然这个玩意儿和普通\(Nim\)游戏是有区别的。

形式化的,\(Nim\)游戏的关键在于决策集合为空者负,而这里的决策集合为空者胜。

所以就显然不能直接用\(SG\)函数的那套理论。



这种“决策集合为空者胜”的博弈游戏被称为\(Anti-SG\)游戏。

有一个\(SJ\)定理是这样的:

对于一个\(Anti-SG\)游戏,如果我们规定当局面中所有的单一游戏的\(SG\)值为\(0\)时游戏结束,则先手必胜当且仅当满足下列条件之一:

游戏的\(SG\)值不为零且游戏中某个单一游戏的\(SG\)值大于一。

游戏的\(SG\)值为零且游戏中不存在某个单一游戏的\(SG\)值大于一。

放到这题中,因为石子可以被任意数量拿取,所以\(SG\)值就等于石子数量。根据\(SJ\)定理,小约翰必胜的条件就是:

所有石子异或和不为零且存在一堆石子个数大于一;

所有石子异或和为零且不存在某一堆石子个数大于一。

code

#include<cstdio>
#include<algorithm>
using namespace std;
int gi()
{
int x=0,w=1;char ch=getchar();
while ((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
if (ch=='-') w=0,ch=getchar();
while (ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return w?x:-x;
}
int main()
{
int T=gi();
while (T--)
{
int n=gi(),Max=0,Sum=0;
for (int i=1,x;i<=n;++i)
x=gi(),Max=max(Max,x),Sum^=x;
puts((Sum&&Max>1)||(!Sum&&Max<=1)?"John":"Brother");
}
return 0;
}

[BZOJ1022][SHOI2008]小约翰的游戏的更多相关文章

  1. bzoj千题计划112:bzoj1022: [SHOI2008]小约翰的游戏John

    http://www.lydsy.com/JudgeOnline/problem.php?id=1022 http://www.cnblogs.com/TheRoadToTheGold/p/67448 ...

  2. BZOJ1022 [SHOI2008]小约翰的游戏John 【博弈论】

    1022: [SHOI2008]小约翰的游戏John Time Limit: 1 Sec  Memory Limit: 162 MB Submit: 3014  Solved: 1914 [Submi ...

  3. [Bzoj1022][SHOI2008]小约翰的游戏John(博弈论)

    1022: [SHOI2008]小约翰的游戏John Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2976  Solved: 1894[Submit] ...

  4. bzoj1022: [SHOI2008]小约翰的游戏John(博弈SG-nim游戏)

    1022: [SHOI2008]小约翰的游戏John 题目:传送门 题目大意: 一道反nim游戏,即给出n堆石子,每次可以取完任意一堆或一堆中的若干个(至少取1),最后一个取的LOSE  题解: 一道 ...

  5. BZOJ1022 [SHOI2008]小约翰的游戏John

    Description 小约翰经常和他的哥哥玩一个非常有趣的游戏:桌子上有n堆石子,小约翰和他的哥哥轮流取石子,每个人取 的时候,可以随意选择一堆石子,在这堆石子中取走任意多的石子,但不能一粒石子也不 ...

  6. [BZOJ1022] [SHOI2008] 小约翰的游戏John (SJ定理)

    Description 小约翰经常和他的哥哥玩一个非常有趣的游戏:桌子上有n堆石子,小约翰和他的哥哥轮流取石子,每个人取的时候,可以随意选择一堆石子,在这堆石子中取走任意多的石子,但不能一粒石子也不取 ...

  7. BZOJ1022[SHOI2008]小约翰的游戏——anti-SG(反尼姆博弈)

    题目描述 小约翰经常和他的哥哥玩一个非常有趣的游戏:桌子上有n堆石子,小约翰和他的哥哥轮流取石子,每个人取的时候,可以随意选择一堆石子,在这堆石子中取走任意多的石子,但不能一粒石子也不取,我们规定取到 ...

  8. BZOJ1022:[SHOI2008]小约翰的游戏John(博弈论)

    Description 小约翰经常和他的哥哥玩一个非常有趣的游戏:桌子上有n堆石子,小约翰和他的哥哥轮流取石子,每个人取的时候,可以随意选择一堆石子,在这堆石子中取走任意多的石子,但不能一粒石子也不取 ...

  9. [bzoj1022][SHOI2008]小约翰的游戏 John (博弈论)

    Description 小约翰经常和他的哥哥玩一个非常有趣的游戏:桌子上有n堆石子,小约翰和他的哥哥轮流取石子,每个人取的时候,可以随意选择一堆石子,在这堆石子中取走任意多的石子,但不能一粒石子也不取 ...

随机推荐

  1. python的PIL模块安装

    一.Centos安装PIL #尤其重要,否则会报错 yum install python-devel yum install libjpeg libjpeg-devel zlib zlib-devel ...

  2. web前端基础知识学习网站推介

    内容:一.基础知识及学习资料1. HTML入门学习:http://www.w3school.com.cn/html/index.aspHTML5 入门学习:http://www.w3school.co ...

  3. 转:USB枚举

  4. 在shell中使用sendmail发送邮件

    cat > sendmymail.sh #!/bin/bash/usr/sbin/sendmail -t <<EOFFrom: Mail testing <abc@gmail. ...

  5. mysql删除重复记录

    Solution 1: Add Unique Index on your table: ALTER IGNORE TABLE `TableA` ADD UNIQUE INDEX (`member_id ...

  6. 泛型学习第一天:List与IList的区别 (三)

    已经有很多人讨论过IList和List的区别,恩,我也赞同其中的一些观点,其实他们二者也是有优有劣的,看你着重用在哪个方面,先贴一下我赞同的意见,基本上也都是网友们总结的. 首先IList 泛型接口是 ...

  7. 集成Facebook SDK

    1. 下载SDK https://developers.facebook.com/docs/ios?locale=zh_CN 2. 如何集成 https://developers.facebook.c ...

  8. MVC 中 System.Web.Optimization 找不到引用

    在MVC4的开发中,如果创建的项目为空MVC项目,那么在App_Start目录下没有BundleConfig.cs项的内容,在手动添加时在整个库中都找不到:System.Web.Optimizatio ...

  9. flume-ng源码阅读RollingFileSink(原创)

    org.apache.flume.sink.RollingFileSink    这个类比较简单. source的种类有两种:一种是PollableSource:另外一种是EventDrivenSou ...

  10. RPM和yum相关

    写在前面: 在这里可以知道rpm和yum的基本用法,找到更新本地yum源.搭建yum源的方法以及yum很琐碎的东西,包括yum源的优先级.用yum来安装或卸载CentOS图形界面包以及保存yum下载的 ...