这道题是典型的数搜索,讲究把数一层一层化小,而且还有最重要的大质数剪枝。

#include <cstdio>
#include <cmath>
typedef long long LL;
int n;
const int N=;
const LL Inf=0x7fffffff;
LL ans;
int len,prime[N];
bool isnot[N];
inline void getprime(){
int lim=;
for(int i=;i<=lim;i++){
if(!isnot[i])prime[++len]=i;
for(int j=;prime[j]*i<=lim;j++){
isnot[prime[j]*i]=;
if(i%prime[j]==)break;
}
}
}
inline bool isprime(int x){
if(x==)return ;
int lim=(int)sqrt(x+0.5);
for(int i=;prime[i]<=lim;i++)
if(x%prime[i]==)
return ;
return ;
}
inline LL Min(LL x,LL y){
return x<y?x:y;
}
void dfs(int pos,LL now,int rest){
if(pos>=len)return;
if(now>=ans)return;
if(rest==){ans=now;return;}
if(isprime(rest+)){ans=Min(ans,now*(rest+));return;}
LL have=prime[pos]-,j=prime[pos];
if(pos==)have<<=,j<<=;
while(rest%have==)
dfs(pos+,now*j,rest/have),have*=prime[pos],j*=prime[pos];
dfs(pos+,now,rest);
}
int main(){
getprime(),scanf("%d",&n),ans=Inf+;
if(n<=){printf("-1");return ;}
if(n==){printf("");return ;}
dfs(,,n);
printf("%lld",ans==Inf+?-:ans);
}

【BZOJ 3643】Phi的反函数 数搜索的更多相关文章

  1. [BZOJ]3643 Phi的反函数

    我承认开这篇文章只是因为好笑…… 估计Zky神看见3737会很郁闷吧. http://www.lydsy.com/JudgeOnline/problem.php?id=3643 本来想直接交3737改 ...

  2. 【BZOJ-3643】Phi的反函数 数论 + 搜索

    3643: Phi的反函数 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 141  Solved: 96[Submit][Status][Discuss ...

  3. [BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛)

    [BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛) 题面 我们知道,从区间\([L,R]\)(L和R为整数)中选取N个整数,总共有\((R-L+1)^N\)种方案.求最大公约数 ...

  4. 【BZOJ 3642】Phi的反函数

    http://www.lydsy.com/JudgeOnline/problem.php?id=3643 因为\[\varphi(n)=\prod_i p_i^{k_i-1}(p_i-1),n=\pr ...

  5. bzoj3643 Phi的反函数

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3643 [题解] n = p1^a1*p2^a2*...*pm^am phi(n) = p1( ...

  6. [BZOJ 1026] [SCOI 2009] Windy数 【数位DP】

    题目链接:BZOJ - 1026 题目分析 这道题是一道数位DP的基础题,对于完全不会数位DP的我来说也是难题.. 对于询问 [a,b] 的区间的答案,我们对询问进行差分,求 [0,b] - [0,a ...

  7. [BZOJ 1085] [SCOI2005] 骑士精神 [ IDA* 搜索 ]

    题目链接 : BZOJ 1085 题目分析 : 本题中可能的状态会有 (2^24) * 25 种状态,需要使用优秀的搜索方式和一些优化技巧. 我使用的是 IDA* 搜索,从小到大枚举步数,每次 DFS ...

  8. ●BZOJ 4408 [Fjoi 2016]神秘数

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4408 题解: 主席树 首先,对于一些数来说, 如果可以我们可以使得其中的某些数能够拼出 1- ...

  9. 【bzoj 3233】[Ahoi2013]找硬币 ——搜索

    Description 小蛇是金融部部长.最近她决定制造一系列新的货币.假设她要制造的货币的面值为x1,x2,x3… 那么x1必须为1,xb必须为xa的正整数倍(b>a).例如 1,5,125, ...

随机推荐

  1. PHP-入门指引1

    PHP("PHP: Hypertext Preprocessor",超文本预处理器的字母缩写)是一种被广泛应用的开放源代码的多用途脚本语言,它可嵌入到 HTML中,尤其适合 web ...

  2. Phpstrom开发工具

    下载地址 https://www.jetbrains.com/zh/phpstorm/specials/phpstorm/phpstorm.html?utm_source=baidu&utm_ ...

  3. ruby net/http模块使用

    ruby中的NET::HTTP:这里暂时先列出几个固定用法: 其中一,二不支持请求头设置(header取ruby默认值),只能用于基本的请求,不支持持久连接,如果您执行许多HTTP请求,则不推荐它们: ...

  4. JavaScript 对引擎、运行时、调用堆栈的概述理解

    JavaScript 对引擎.运行时.调用堆栈的概述理解  随着JavaScript越来越流行,越来越多的团队广泛的把JavaScript应用到前端.后台.hybrid 应用.嵌入式等等领域. 这篇文 ...

  5. spoj1026 favorite dice

    #include <bits/stdc++.h> using namespace std; int n,t; ; double dp[N]; /* 甩一个n面的骰子,问每一面都被甩到的需要 ...

  6. wamp调用ICE中间件

    wamp调用ICE中间件 wamp 是集成开发包,我的wamp中的php 为5.3.10 ,经过3天艰苦奋战,终于在phpinfo()中看到了 ICE 出现了.. OK,最新的ice  为 3.5.1 ...

  7. urllib.request.urlretrieve()

    urllib模块提供的urlretrieve()函数.urlretrieve()方法直接将远程数据下载到本地. urlretrieve(url, filename=None, reporthook=N ...

  8. Notepad++删除空行的多种实现办法

    Notepad++支持基础的正则表达式,同时由于自身丰富的插件和功能,所以删除空行或有空格的空行,有多种实现办法,条条大路通罗马,闪电博客抛砖引玉,供大家参考. 一.删除空行(不包括有空格类符号的空行 ...

  9. 掘金 Android 文章精选合集

    掘金 Android 文章精选合集 掘金官方 关注 2017.07.10 16:42* 字数 175276 阅读 50053评论 13喜欢 669 用两张图告诉你,为什么你的 App 会卡顿? - A ...

  10. Java并发基础--线程安全

    一.线程安全 1.线程安全的概念 线程安全:某个类被单个线程,或者多个线程同时访问,所表现出来的行为是一致,则可以说这个类是线程安全的. 2.什么情况下会出现线程安全问题 在单线程中不会出现线程安全问 ...