【BZOJ 3643】Phi的反函数 数搜索
这道题是典型的数搜索,讲究把数一层一层化小,而且还有最重要的大质数剪枝。
#include <cstdio>
#include <cmath>
typedef long long LL;
int n;
const int N=;
const LL Inf=0x7fffffff;
LL ans;
int len,prime[N];
bool isnot[N];
inline void getprime(){
int lim=;
for(int i=;i<=lim;i++){
if(!isnot[i])prime[++len]=i;
for(int j=;prime[j]*i<=lim;j++){
isnot[prime[j]*i]=;
if(i%prime[j]==)break;
}
}
}
inline bool isprime(int x){
if(x==)return ;
int lim=(int)sqrt(x+0.5);
for(int i=;prime[i]<=lim;i++)
if(x%prime[i]==)
return ;
return ;
}
inline LL Min(LL x,LL y){
return x<y?x:y;
}
void dfs(int pos,LL now,int rest){
if(pos>=len)return;
if(now>=ans)return;
if(rest==){ans=now;return;}
if(isprime(rest+)){ans=Min(ans,now*(rest+));return;}
LL have=prime[pos]-,j=prime[pos];
if(pos==)have<<=,j<<=;
while(rest%have==)
dfs(pos+,now*j,rest/have),have*=prime[pos],j*=prime[pos];
dfs(pos+,now,rest);
}
int main(){
getprime(),scanf("%d",&n),ans=Inf+;
if(n<=){printf("-1");return ;}
if(n==){printf("");return ;}
dfs(,,n);
printf("%lld",ans==Inf+?-:ans);
}
【BZOJ 3643】Phi的反函数 数搜索的更多相关文章
- [BZOJ]3643 Phi的反函数
我承认开这篇文章只是因为好笑…… 估计Zky神看见3737会很郁闷吧. http://www.lydsy.com/JudgeOnline/problem.php?id=3643 本来想直接交3737改 ...
- 【BZOJ-3643】Phi的反函数 数论 + 搜索
3643: Phi的反函数 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 141 Solved: 96[Submit][Status][Discuss ...
- [BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛)
[BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛) 题面 我们知道,从区间\([L,R]\)(L和R为整数)中选取N个整数,总共有\((R-L+1)^N\)种方案.求最大公约数 ...
- 【BZOJ 3642】Phi的反函数
http://www.lydsy.com/JudgeOnline/problem.php?id=3643 因为\[\varphi(n)=\prod_i p_i^{k_i-1}(p_i-1),n=\pr ...
- bzoj3643 Phi的反函数
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3643 [题解] n = p1^a1*p2^a2*...*pm^am phi(n) = p1( ...
- [BZOJ 1026] [SCOI 2009] Windy数 【数位DP】
题目链接:BZOJ - 1026 题目分析 这道题是一道数位DP的基础题,对于完全不会数位DP的我来说也是难题.. 对于询问 [a,b] 的区间的答案,我们对询问进行差分,求 [0,b] - [0,a ...
- [BZOJ 1085] [SCOI2005] 骑士精神 [ IDA* 搜索 ]
题目链接 : BZOJ 1085 题目分析 : 本题中可能的状态会有 (2^24) * 25 种状态,需要使用优秀的搜索方式和一些优化技巧. 我使用的是 IDA* 搜索,从小到大枚举步数,每次 DFS ...
- ●BZOJ 4408 [Fjoi 2016]神秘数
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4408 题解: 主席树 首先,对于一些数来说, 如果可以我们可以使得其中的某些数能够拼出 1- ...
- 【bzoj 3233】[Ahoi2013]找硬币 ——搜索
Description 小蛇是金融部部长.最近她决定制造一系列新的货币.假设她要制造的货币的面值为x1,x2,x3… 那么x1必须为1,xb必须为xa的正整数倍(b>a).例如 1,5,125, ...
随机推荐
- Jackson 触发的String.intern() bug, 导致内存持续增加,JVM-Java内存泄漏
我在本地用Jackson可以复现这个问题了. import java.io.IOException; import java.util.Map; import java.util.Random; im ...
- Python学习之魔法方法
Python中会看到前后都加双下划线的函数名,例如 __init__(self),这类写法在Python中具有特殊的含义.如果对象使用了这类方法中的某一个,那么这个方法将会在特殊的情况下被执行,然而几 ...
- python继续函数-练习(2017-8-3)
写函数,计算传入字符串中[数字].[字母].[空格] 以及 [其他]的个数 def detection(p): intcount = 0 strcount = 0 othercount = 0 spa ...
- Fibonacci使用递归和循环实现
#include<stdio.h> double Fibonacci(int i); double Fibonacci_(int i); int main(void) { int i; p ...
- linux io 学习笔记(03)---共享内存,信号灯,消息队列
system V IPC 1)消息队列 2)共享内存 3)信号灯(信号量集) 1.消息队列. ipcs -q 查看系统中使用消息队列的情况 ipcrm -q +msqid 删除消息队列 消息队列工作原 ...
- Tomcat配置SSL连接
1.服务器端单项认证 在Tomcat的server.xml文件中,已经提供了现成的配置SSL连接器的代码,只要把<Connector>元素的注释去掉即可: <!— Define a ...
- Oralce 的sql问题
获取两个日期间的工作日, SQL> select dt_time 2 from (select to_date('01-12-2010 08:20:56','dd-mm-yyyy HH: ...
- 给apk签名
一.签名 把apk和签名文件放在jdk bin目录下,然后在jkd bin目录下执行以下代码: jarsigner -verbose -keystore xxx.keystore -signedjar ...
- 免费天气预报API接口
一.中国气象局(http://www.weather.com.cn) 1.实时接口 http://mobile.weather.com.cn/data/sk/101010100.html http:/ ...
- ES6 中 export ,export default 区别
1.export与export default均可用于导出常量.函数.文件.模块等: 2.你可以在其它文件或模块中通过import+(常量 | 函数 | 文件 | 模块)名的方式,将其导入,以便能够对 ...