【BZOJ】1799: [Ahoi2009]self 同类分布
【题意】给出a,b,求出[a,b]中各位数字之和能整除原数的数的个数。1 ≤ a ≤ b ≤ 10^18
【算法】数位DP
【题解】
感觉这种方法很暴力啊。
枚举数位和1~162(不能枚举0,不然会模0,相当于除0),记忆化f[pos][sum][val],sum表示当前数位和,val表示数字取模枚举的数位和。
每次sum+i和(val*10+i)%MOD转移。
sum用减法优化,即记忆化(MOD-sum),但是枚举过程中都要memset,导致效率低下,记忆化效果很差。
要什么方法才能跑1.3s啊,%%%。
#include<cstdio>
#include<algorithm>
#include<cstring>
#define ll long long
using namespace std;
const int maxn=;
ll f[maxn][][],a[maxn],b[maxn],c[maxn],n,MOD;
ll dfs(int pos,int sum,int val,int limit){
if(sum>MOD)return ;
if(pos==-){if(sum==MOD&&val==)return ;else return ;}
if(!limit&&~f[pos][MOD-sum][val])return f[pos][MOD-sum][val]; int up=limit?a[pos]:;
ll ans=;
for(int i=;i<=up;i++){
ans+=dfs(pos-,sum+i,(val*+i)%MOD,limit&&i==up);
}
if(!limit)f[pos][MOD-sum][val]=ans;
return ans;
}
int main(){
ll A,B,cntb=,cntc=;
scanf("%lld%lld",&A,&B);
A--;
while(A){
b[cntb++]=A%;
A/=;
}
while(B){
c[cntc++]=B%;
B/=;
}
ll ans=;
for(int i=;i<=;i++){//不能模0啊!!!模0也是除0啊!!!
memset(f,-,sizeof(f));
MOD=i;
n=cntb;
for(int j=;j<n;j++)a[j]=b[j];
ans-=dfs(n-,,,);
n=cntc;
for(int j=;j<n;j++)a[j]=c[j];
ans+=dfs(n-,,,);
}
printf("%lld",ans);
return ;
}
【BZOJ】1799: [Ahoi2009]self 同类分布的更多相关文章
- bzoj 1799: [Ahoi2009]self 同类分布 数位dp
1799: [Ahoi2009]self 同类分布 Time Limit: 50 Sec Memory Limit: 64 MB[Submit][Status][Discuss] Descripti ...
- BZOJ 1799 - [AHOI2009]self 同类分布 - 枚举 数位DP
Description 找出$[L, R]$ 区间内有多少数, 各位数字和 能整除原数 Solution 枚举每个可能的数字和, 进行数位DP即可 , 水爆 Code #include<cstd ...
- bzoj 1799: [Ahoi2009]self 类似的分布 解读
[原标题] 1799: [Ahoi2009]self 同类分布 Time Limit: 50 Sec Memory Limit: 64 MB Submit: 554 Solved: 194 [id ...
- [Ahoi2009]self 同类分布
1799: [Ahoi2009]self 同类分布 Time Limit: 50 Sec Memory Limit: 64 MBSubmit: 2357 Solved: 1079[Submit][ ...
- bzoj1799: [Ahoi2009]self 同类分布
数位dp 先从1到162枚举各位数之和 s[i][j][k][l]表示i位数,第一位小于等于j,当前各位数字和为k,当前取模余数为l的方案数 然后脑补一下转移就行了 详见代码 #include < ...
- [BZOJ1799][Ahoi2009]self 同类分布(数位dp)
题目描述 给出两个数 a,ba,b ,求出 [a,b][a,b] 中各位数字之和能整除原数的数的个数. 输入输出格式 输入格式: 一行,两个整数 aa 和 bb 输出格式: 一个整数,表示答案 输入输 ...
- BZOJ1799 [Ahoi2009]self 同类分布[数位DP]
求出[a,b]中各位数字之和能整除原数的数的个数. 有困难的一道题.被迫看了题解:枚举每一个各位数字的和($<=162$),设计状态$f[len][sum][rest]$表示dp后面$len$位 ...
- 【数位dp】bzoj1799: [Ahoi2009]self 同类分布
各种奇怪姿势的数位dp Description 给出a,b,求出[a,b]中各位数字之和能整除原数的数的个数. Sample Input 10 19 Sample Output 3 HINT [约束条 ...
- 【AHOI2009】同类分布 题解(数位DP)
题目大意:求$[l,r]$中各位数之和能被该数整除的数的个数.$0\leq l\leq r\leq 10^{18}$. ------------------------ 显然数位DP. 搜索时记录$p ...
随机推荐
- L007- linux系统优化进阶课堂小节
首先把这节课所讲的大概引锁一下,然后下面详细列举. 1.填加普通用户,通过sudo管理. 2.更改默认的SSH服务端口及禁止root用户远程连接. 3.定时自动更新服务器时间 4.关闭防火墙(ipta ...
- vs2015-Cordova开发安卓应用环境搭建
之前看到过用html5+css+js就可以开发跨平台的应用,然后发现vs2015里就有个Cordova项目所以就想试试,但并不是这么顺利.刚开始对安卓环境一点也不了解,就到处百度搜索.终于成功了. 首 ...
- AutoMapper.RegExtension 介绍
AutoMapper.RegExtension 为一个特小特小特小的用来根据约定自动调用AutoMapper中的方法配置映射的扩展库.你可以引入该库也可以将源码中核心部分的代码文件夹整个拷贝至项目中. ...
- 6.1 python+appium元素定位方式(登录app)
1.0.0 :常见的十种元素定位方式 .driver.find_element_by_id() #id定位 .driver.find_element_by_name() #name定位(已经凉 ...
- ThinkPHP自定义成功界面、失败界面、异常界面
在ThinkPHP的手册中,附录里边的配置参考,有一个模板引擎设置. 或者在手册里面的控制器,跳转和重定向里面. 紧接着,就讲到了如何自定义这些界面. 将上诉的配置参数写到到配置文件里,修改路径到自己 ...
- POJ 3565 Ants(最佳完美匹配)
Description Young naturalist Bill studies ants in school. His ants feed on plant-louses that live on ...
- ASP.NET CORE 2.0 文档中文正式版已经出来了
https://docs.microsoft.com/zh-cn/aspnet/core/
- Vue组件间通信:一个例子学会Vue组件-Vue.js学习总结)(转载)
详情请点击 http://www.jianshu.com/p/9ad1ba89a04b
- Activiti工作流(一)——Activiti Diagram
工作流解决在多个参与者之间按照某种预定义的规则传递文档.信息或任务的过程自动进行,从而实现某个预期的业务目标,或者促使此目标的实现. 使用Eclipse开发,需要安排工作流插件,详情见下面. Name ...
- Linux挂载Win共享文件夹_VmwareTools