HDU 5407(2015多校10)-CRB and Candies(组合数最小公倍数+乘法逆元)
题目地址: pid=5407">HDU 5407
题意:CRB有n颗不同的糖果,如今他要吃掉k颗(0<=k<=n),问k取0~n的方案数的最小公倍数是多少。
思路:首先做这道题我们须要必备的几个技能点。
1. LCM(C(n,0), C(n,1),…, C(n,n))=LCM(1,2,3,…n+1)/(n+1)。额,这个有一篇证明Kummer定理
2.(1) 乘法逆元定义:
满足a*k≡1 (mod p)的k值就是a关于p的乘法逆元(a,p互质)。
(2)为什么要用乘法逆元:
当我们要求(a/b) mod p的值,且a非常大,无法直接求得a/b的值时,我们就要用到乘法逆元。我们能够通过求b关于p的乘法逆元k,将a乘上k再模p。即(a*k) mod p。其结果与(a/b) mod p等价。
(3)乘法逆元的解法:
A:逆元能够用扩展欧几里德来解最小的正整数就可以:
a*x%p = 1;
a*x = y*p + 1;
a*x -p*y = 1;
B:当p是质数的时候 a/x mod p=a*x^(p-2) mod p
证明:若 a*b mod p = 1 则a和b互为乘法逆元。
由于p是质数。所以由费马小定理得出x^(p-1) mod p = 1 ,所以x*x^(p-2) mod p = 1是成立的,所以x 和 x^(p-2) 互为乘法逆元。
当p不是质数的时候a/x mod p=a*x^(phi(p)-1) mod p。
#include <stdio.h>
#include <math.h>
#include <string.h>
#include <stdlib.h>
#include <iostream>
#include <sstream>
#include <algorithm>
#include <set>
#include <queue>
#include <stack>
#include <map>
#include <bitset>
#pragma comment(linker, "/STACK:102400000,102400000")
using namespace std;
typedef long long LL;
const int inf=0x3f3f3f3f;
const double pi= acos(-1.0);
const double esp=1e-7;
const int Maxn=1e6+10;
const int mod=1000000007;
bitset<Maxn>pri;
int prime[Maxn];
int vis[Maxn];
int k;
LL x;
LL f[Maxn];
void is_prime()
{
pri.set();
for(int i=2;i<Maxn;i++){
if(pri[i]){
prime[k++]=i;
for(int j=i+i;j<Maxn;j+=i)
pri[j]=0;
}
}
}
LL Mul(LL a,LL b,LL mod)
{
LL res=0;
while(b>0) {
if(b&1)
res=(res+a)%mod;
b>>=1;
a=(a+a)%mod;
}
return res;
}
LL modxp(LL a,LL b,LL mod)
{
LL res=1;
while(b>0) {
if(b&1)
res=Mul(res,a,mod);
b>>=1;
a=Mul(a,a,mod);
}
return res;
}
void get()
{
memset(vis,0,sizeof(vis));
for(int i=0;i<k;i++){//将素数p的k次方p^k标记一下,找出符合的素数
x=prime[i];
while(x<Maxn){
vis[x]=prime[i];
x*=prime[i];
}
}
f[1]=1;
for(int i=2;i<Maxn;i++){
if(vis[i])
f[i]=(f[i-1]*vis[i])%mod;
else
f[i]=f[i-1]%mod;
}
}
int main()
{
int T,n;
is_prime();
get();
scanf("%d",&T);
while(T--){
scanf("%d",&n);
printf("%lld\n",f[n+1]*modxp(n+1,mod-2,mod)%mod);//(f(n+1)/(n+1))%mod
}
return 0;
}
HDU 5407(2015多校10)-CRB and Candies(组合数最小公倍数+乘法逆元)的更多相关文章
- HDU 5410(2015多校10)-CRB and His Birthday(全然背包)
题目地址:HDU 5410 题意:有M元钱,N种礼物,若第i种礼物买x件的话.会有Ai*x+Bi颗糖果,现给出每种礼物的单位价格.Ai值与Bi值.问最多能拿到多少颗糖果. 思路:全然背包问题. dp[ ...
- hdu 5288||2015多校联合第一场1001题
pid=5288">http://acm.hdu.edu.cn/showproblem.php?pid=5288 Problem Description OO has got a ar ...
- CRB and Candies(组合数学+求逆元+lcm)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5407 题目: Problem Description CRB has N different cand ...
- hdu5414(2015多校10)--CRB and String(字符串匹配)
题目链接:pid=5414">点击打开链接 题目大意:有A.B两个字符串.如今有一种操作能够在A的随意一个字符x后面添加一个字符y(x.=y).问能不能将A变为B. 首先假设A能够变成 ...
- HDU 5358(2015多校联合训练赛第六场1006) First One (区间合并+常数优化)
pid=5358">HDU 5358 题意: 求∑i=1n∑j=in(⌊log2S(i,j)⌋+1)∗(i+j). 思路: S(i,j) < 10^10 & ...
- HDU 5373(2015多校7)-The shortest problem(模拟%11)
题目地址:pid=5373">HDU 5373 题意:给你一个数n和操作次数t,每次操作将n的各位数之和求出来放在n的末尾形成新的n,问t次操作后得到的n能否够被11整除. 思路:就是 ...
- HDU 5326(2015多校3)-Work(dfs)
题目地址:pid=5326">HDU 5326 题意:给一张有向图n个点.n - 1(....输入n-1)条边. A指向B代表A管理B.然后能够间接管理,比方A管理B,B管理C.则A管 ...
- hdu 5361 2015多校联合训练赛#6 最短路
In Touch Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others) Total ...
- HDU 5371(2015多校7)-Hotaru's problem(Manacher算法求回文串)
题目地址:HDU 5371 题意:给你一个具有n个元素的整数序列,问你是否存在这样一个子序列.该子序列分为三部分,第一部分与第三部分同样,第一部分与第二部分对称.假设存在求最长的符合这样的条件的序列. ...
随机推荐
- centos6.5 安装stardict 出现问题 [Errno 256] No more mirrors to try
1. 下载startdict #wget http://downloads.naulinux.ru/pub/NauLinux/6x/i386/sites/School/RPMS/stardict-3. ...
- Codeforces Round #424 A(模拟)
#include<cstdio> ]; int main(){ scanf("%d",&n); ;i<=n;++i)scanf("%d" ...
- RabbitMQ使用介绍(python)
在我们的项目开发过程中,我们有时会有时候有两个或者多个程序交互的情况,当然就会使用到这里的消息队列来实现.现在比较火的就是RabbitMQ,还有一些ZeroMQ ,ActiveMQ 等等,著名的ope ...
- noi题库 1.7 字符串
前九题 01:统计数字字符个数 总时间限制: 1000ms 内存限制: 65536kB 描述 输入一行字符,统计出其中数字字符的个数. 输入 一行字符串,总长度不超过255. 输出 输出为1行,输出字 ...
- codeforces 713C C. Sonya and Problem Wihtout a Legend(dp)(将一个数组变成严格单增数组的最少步骤)
E. Sonya and Problem Wihtout a Legend time limit per test 5 seconds memory limit per test 256 megaby ...
- luogu P1194 买礼物
题目描述 又到了一年一度的明明生日了,明明想要买B样东西,巧的是,这B样东西价格都是A元. 但是,商店老板说最近有促销活动,也就是: 如果你买了第I样东西,再买第J样,那么就可以只花K[I,J]元,更 ...
- Djanog|requirements.txt生成
Django | requirement.txt 生成 pip django 1 pip 通常我们熟悉使用的都是 pip, 这个工具确实方便项目管理依赖包.当想把当前项目依赖的包的名称和版本导入指 ...
- 苹果iOS系统下检查第三方APP是否安装及跳转启动
在iOS系统,使用Url Scheme框架在APP间互相跳转和传递数据,本文只介绍如果检测和跳转. Url Scheme框架 如果你想知道ios设备中是否安装QQ这个软件,我们可以通过一个简单方法判断 ...
- 谁说 JavaScript 很简单了?
转载请注明出处,保留原文链接以及作者信息 本文介绍了 JavaScript 初学者应该知道的一些技巧和陷阱.如果你是老司机,就当做回顾了,哪里有写的不好的地方欢迎指出. 1. 你是否尝试过对一个数字数 ...
- python中list/tuple/dict/set的区别
序列是Python中最基本的数据结构.序列中的每个元素都分配一个数字 - 它的位置,或索引,第一个索引是0,第二个索引是1,依此类推.Python有6个序列的内置类型,但最常见的是列表list和元组t ...