Lucene Payload 的研究与应用
Payload (元数据) 诞生于 Lucene 的2.2 版本,它是在 Lucene 2.1 索引文件格式的基础上扩展而来,提供了一种可以灵活配置的高级索引技术,在某些特定应用场景下能优化基于 Lucene 构建的应用的搜索性能。本文重点研究了 Payload 的实现原理、索引结构的变化、接口 API ,在本文的最后举例说明了 Payload 是如何帮助改善搜索体验的。
Lucene 是最初是由 Douglass R. Cutting 博士发布在自己主页上的一个 Java 全文信息检索工具包,后来成为 Apache Jakarta 家族中的一个开源项目,目前已经成为 Apache 基金会的顶级项目。索引是现代搜索引擎的核心,建立索引的过程就是把源数据处理成方便查询的索引文件的过程。 Lucene 采用的是一种被称为倒排索引 (Inverted Index) 的机制,倒排索引也是大多现代搜索引擎的基础。
Payload (元数据) 诞生于 Lucene 的2.2 版本,它是在 Lucene 2.1 索引文件格式的基础上扩展而来,提供了一种可以灵活配置的高级索引技术。本文重点研究了 Payload 的实现原理、索引结构的变化、接口 API ,在本文的最后举例说明了 Payload 是如何帮助改善搜索体验的。
Payload 的出现
倒排索引就是说我们维护了一个词条表,对于这个表中的每个词条,都有一个链表描述了有哪些文档包含了这个词条。假定我们有三篇文档 D0,D1,D2:
D0 = "it is what it is"
D1 = "what is it"
D2 = "it is a banana"
那么,我们可以创建如下倒排索引结构:
Term Posting-list
"a": {2}
"banana": {2}
"is": {0, 1, 2}
"it": {0, 1, 2}
"what": {0, 1}
一般情况下,将一个词条所索引的文档(一般用文档编号表示)称之为 Posting,那么一个词条索引的多个文档就称之为 Posting-list。除了在 Posting-list 中记录文档编号,Lucene 也在Posting-list 中添加了词频和位置信息。词频的添加有助于结果的排序,位置信息的添加解决了短语检索的问题。
在Lucene 2.1 中,记录位置信息的即 .prx 文件,它的格式如下:
ProxFile (.prx) --> <TermPositions> TermCount
TermPositions --> <Positions> DocFreq
Positions --> <PositionDelta> Freq
PositionDelta --> VInt
仔细观察我们可以发现,文档 D0 中 what 词条是加粗显示而文档 D1 中的 what 则没有。显然,Lucene 2.1 的索引结构是无法表示出两者的差异。为了解决这个问题,从 Lucene2.2 开始,引入了 Payload 的概念。 Payload 即词条 (Term) 的元数据或称载荷, Lucene 支持用户在索引的过程中将词条的元数据添加的索引库中,同时也提供了在检索结果时读取 Payload 信息的功能。Payload 的诞生为用户提供了一种可灵活配置的高级索引技术,为支持更加丰富的搜索体验创造了条件。
那么 Lucene 是如何改进索引文件以支持 Payload 功能的呢?
索引结构的变化
为了更加形象的描述改进后的索引结构,我们用不同的颜色表示出文档 ID ,词频,位置和 Payload,如图 1 所示,(U表示下划线,B表示粗体)
图 1:Lucene的索引结构
对比 Lucene2.1 的索引结构,Lucene2.2 的索引结构的表达式如下:
ProxFile (.prx) --> <TermPositions> TermCount
TermPositions --> <Positions> DocFreq
Positions --> <PositionDelta,Payload?> Freq
Payload --> <PayloadLength?,PayloadData>
PositionDelta --> VInt
PayloadLength --> VInt
PayloadData --> bytePayloadLength
从上面的索引表达式中可以看出只有当一个词汇包含 Payload 信息时,Lucene 才会为之分配相应的 Payload 存储空间,这是一种高效率的空间实现。Lucene2.2 之后的 Payload 特指词条的元数据,那么文档的元数据如何表示呢?
我们知道,Lucene 中 Document 由 Field 组成,而 Field 由 Term 组成,文档的 Payload 可以用存储的 Field 表示。这样存在的问题是,如果需要读取大量的文档的元数据,因为 Field 的索引信息与存储信息是分开的,那么 I/O 效率将是较差的。而 Payload 信息则是直接存储在索引中,因此可以利用词条的 Payload 功能存储文档级别的元数据。文档级 Payload 可表示为如下图2所示格式(省略了词频和位置信息):
图 2:文档级的 Payload 表示
如图2所示,以文档的 url 信息为例,通过为每一个文档构造一个特殊的词条 ”url” ,将每个文档的 url值作为
payload 信息,把 Payload 与文档编号关联起来,这样就可以实现文档级的 Payload。
Payload 相关的 API
从 Lucene2.2 的索引结构可以看出,Payload 的存储与词条的位置信息是紧密联系在一起的,因此 Payload 的存储和检索 API 位于Token类和 TermPositions 类当中。
向词条中存储 Payload 信息
org.apache.lucene.analysis.Token
void setPayload(Payload payload)
Payload 信息的构造函数
org.apache.lucene.index.Payload
Payload(byte[] data) Payload(byte[] data,
int offset,
int length)
从位置信息中检索 Payload
org.apache.lucene.index.TermPositions
boolean next();
int doc()
int freq(); int nextPosition(); int getPayloadLength();
byte[] getPayload(byte[] data,
int offset)
Payload 的应用场景举例
场景一:改进的 Lucene 的区间检索
日期检索是区间检索的常见例子,如用户需要在图书馆中检索特定年代的图书,满足如下条件:
Date>1954/08/01 & Date<1955/08/01
常见的做法就是将日期作为一个独立 Field 进行存储,利用 RangeQuery 进行区间检索,Posting-list 的格式如图3中左图所示。如果图书日期分布区间很广,用 Field 存储日期信息,我们需要将日期细化到年月日进行存储,因此词条数目是非常庞大的。这种情况下,我们可以利用 Payload 功能来减少词条的数目,提高检索效率,可以将日期的年月作为词条,日作为 Payload 信息,这几乎将词条数目减小了近 30 倍,改进后的存储结构如图3右图所示:
图 3:使用 Payload 存储日期信息
场景二:提高特定词汇的评分
利用 Payload 功能,还可以提高文档中特定词汇的评分,如黑体词汇、斜体词汇等,从而优化搜索结果排序。
下面还以文档 D0 和 D1 为例说明如何设置和检索 Payload。
D0 = "it is what it is"
D1 = "what is it"
Step1:在Analyzer处理过程中,为特殊词汇添加评分Payload
final byte BoldBoost = 5; final byte ItalicBoost = 5;
…
Token token = new Token(…);
…
if (isBold) {//如果是黑体字
token.setPayload(
new Payload(new byte[] {BoldBoost}));
}else if(isItalic){//如果是斜体字
token.setPayload(
new Payload(new byte[] { ItalicBoost }));
}
…
return token;
Step2:重写Similarity (主要负责排名和评分)
Similarity boostingSimilarity =
new DefaultSimilarity() {
// @override
public float scorePayload(byte [] payload,
int offset,
int length) { //读取payload的值,payload存储的即为词汇的评分。
if (length == 1) return payload[offset];
};
Step3:使用重写的boostingSimilarity进行检索
Query btq = new BoostingTermQuery(
new Term(“field”, “what”)); Searcher searcher = new IndexSearcher(…);
Searcher.setSimilarity(boostingSimilarity);
…
Hits hits = searcher.search(btq);
总结
Payload 是 Lucene 一个允许在索引中为词条储存元数据信息。希望通过阅读本文,你可以对Payload 功能有一个整体的了解,进而可以灵活运用 Payload 的功能来优化具体的应用。
Lucene Payload 的研究与应用的更多相关文章
- Lucene.net项目研究说明
最近项目需要全文检索,所以找了几个开源的.NET检索项目,如:Lucene.net,Sphinx,Hubble.net.最后选择使用Lucene.ne来实现全文检索.至于原因嘛,可以参考下面几点: 1 ...
- Lucene底层原理和优化经验分享(1)-Lucene简介和索引原理
Lucene底层原理和优化经验分享(1)-Lucene简介和索引原理 2017年01月04日 08:52:12 阅读数:18366 基于Lucene检索引擎我们开发了自己的全文检索系统,承担起后台PB ...
- 一步一步学习FastJson1.2.47远程命令执行漏洞
本文首发于先知:https://xz.aliyun.com/t/6914 漏洞分析 FastJson1.2.24 RCE 在分析1.2.47的RCE之前先对FastJson1.2.24版本中的RCE进 ...
- Lucene 评分机制二 Payload
这里使用的Lucene4.7.0和Lucene3.X稍有不同 有下面三段内容,我想对船一系列的搜索进行加分 bike car jeep truck bus boat train car ship bo ...
- Lucene的评分(score)机制研究
首先,需要学习Lucene的评分计算公式—— 分值计算方式为查询语句q中每个项t与文档d的匹配分值之和,当然还有权重的因素.其中每一项的意思如下表所示: 表3.5 评分公式中的因子 评分因子 描 述 ...
- Lucene&Solr框架之第一篇
2.信息检索 信息检索是计算机世界中非常重要的一种功能.信息检索不仅仅是指从数据库检索数据,还包括从文件.网页.邮件.用户手输入的内容中检索数据.通过怎样的高效方式将用户想要的信息快速提取出来,是计算 ...
- 原创:史上对BM25模型最全面最深刻的解读以及lucene排序深入讲解
垂直搜索结果的优化包括对搜索结果的控制和排序优化两方面,其中排序又是重中之重.本文将全面深入探讨垂直搜索的排序模型的演化过程,最后推导出BM25模型的排序.然后将演示如何修改lucene的排序源代码, ...
- Lucene的分析资料【转】
Lucene 源码剖析 1 目录 2 Lucene是什么 2.1.1 强大特性 2.1.2 API组成- 2.1.3 Hello World! 2.1.4 Lucene roadmap 3 索引文件结 ...
- Lucene提供的条件判断查询
第一.按词条搜索 - TermQuery query = new TermQuery(new Term("name","word1"));hits = sear ...
随机推荐
- Arcgis For Android之离线地图实现的几种方式
为什么要用,我想离线地图的好处是不言而喻的,所以很多人做系统的时候都会考虑用离线地图.在此,我给大家介绍几种Arcgis For Android下加载离线地图的方式. 在Arcgis For Andr ...
- zoj-3963 Heap Partition(贪心+二分+树状数组)
题目链接: Heap Partition Time Limit: 2 Seconds Memory Limit: 65536 KB Special Judge A sequence ...
- svg实现 圆形 点击扩大、消失
效果: 代码: <!DOCTYPE html> <html> <head lang="en"> <meta charset="U ...
- Delphi Xe4 游戏开发的技术选型.
asphyre 是支持 FireMonkey的. 利用Firemonkey的跨平台接口.实现 win,mac,ios. 其它方案估计就得靠 FPC 了. 好处是多了输出Andriod的可能. zeng ...
- libQt5Core.so: undefined reference to `dlclose@GLIBC_2.4'
/******************************************************************************** * libQt5Core.so: u ...
- python 环境变量设置
Win+E --> 我的电脑 --> 右击 选择属性 --> 高级系统设置 --> 环境变量 --> 用户变量 中 找到 PATH(Path) --> 编辑 --& ...
- linux 系统统计目录下文件夹的大小
du -ah --max-depth=1 这个是我想要的结果 a表示显示目录下所有的文件和文件夹(不含子目录),h表示以人类能看懂的方式,max-depth表示目录的深度. du命令用来查看 ...
- HDU - 5297:Y sequence (迭代&容斥)
Yellowstar likes integers so much that he listed all positive integers in ascending order,but he hat ...
- Python面对对象相关知识总结
很有一段时间没使用python了,前两天研究微信公众号使用了下python的django服务,感觉好多知识都遗忘了,毕竟之前没有深入的实践,长期不使用就忘得快.本博的主要目的就是对Python中我认为 ...
- 谨慎安装Python3.7.0,SSL低版本导致Pip无法使用
最新新配置了一台服务器.安装 的时候直接使用了最新的Python 3.7最新版本. 安装成功,编译成功.但是用pip 安装包的时候提示:pip is configured with locations ...