tornado使用了单进程(当然也可以多进程) + 协程 + I/O多路复用的机制,解决了C10K中因为过多的线程(进程)的上下文切换 而导致的cpu资源的浪费。

tornado中的I/O多路复用前面已经讲过了。本文不做详细解释。

来看一下tornado中的协程模块:tornado.gen:

tornado.gen是根据生成器(generator)实现的,用来更加简单的实现异步。

先来说一下tornado.gen.coroutine的实现思路:

  我们知道generator中的yield语句可以使函数暂停执行,而send()方法则可以恢复函数的执行。

  tornado将那些异步操作放置到yield语句后,当这些异步操作完成后,tornado会将结果send()至generator中恢复函数执行。

在tornado的官方文档中有这么一句话:

Most asynchronous functions in Tornado return a Future; yielding this object returns its result.

就是说:

  在tornado中大多数的异步操作返回一个Future对象

  yield Future对象 会返回该异步操作的结果,这句话的意思就是说 假如 ret = yield some_future_obj 当some_future_obj所对应的异步操作完成后会自动的将该异步操作的结果赋值给 ret

那么,Future对象到底是什么?

一  Future对象

先来说说Future对象:

Future对象可以概括为: 一个异步操作的占位符,当然这个占位符有些特殊,它特殊在:

  1 这个占位符是一个对象

  2 这个对象包含了很多属性,包括_result 以及 _callbacks,分别用来存储异步操作的结果以及回调函数

  3 这个对象包含了很多方法,比如添加回调函数,设置异步操作结果等。

  4 当这个对象对应的异步操作完成后,该对象会被set_done,然后遍历并运行_callbacks中的回调函数

来看一下Future的简化版

class Future(object):
'''
Future对象主要保存一个回调函数列表_callbacks与一个执行结果_result,当我们set_result时,就会执行_callbacks中的函数
如果set_result或者set_done,就会遍历_callbacks列表并执行callback(self)函数
'''
def __init__(self):
self._result = None # 执行的结果
self._callbacks = [] # 用来保存该future对象的回调函数 def result(self, timeout=None):
# 如果操作成功,返回结果。如果失败则抛出异常
self._clear_tb_log()
if self._result is not None:
return self._result
if self._exc_info is not None:
raise_exc_info(self._exc_info)
self._check_done()
return self._result def add_done_callback(self, fn):
if self._done:
fn(self)
else:
self._callbacks.append(fn) def set_result(self, result):
self._result = result
self._set_done() def _set_done(self):
# 执行结束(成功)后的操作。
self._done = True
for cb in self._callbacks:
try:
cb(self)
except Exception:
app_log.exception('Exception in callback %r for %r', cb, self)
self._callbacks = None

完整源码:

class Future(object):
'''
Future对象主要保存一个回调函数列表_callbacks与一个执行结果_result,当我们set_result时,就会执行_callbacks中的函数
'''
def __init__(self):
self._done = False # 是否执行完成
self._result = None # 执行的结果
self._exc_info = None # 执行的异常信息 self._log_traceback = False # Used for Python >= 3.4
self._tb_logger = None # Used for Python <= 3.3 self._callbacks = [] # 用来保存该future对象的回调函数 # Implement the Python 3.5 Awaitable protocol if possible
# (we can't use return and yield together until py33).
if sys.version_info >= (3, 3):
exec(textwrap.dedent("""
def __await__(self):
return (yield self)
"""))
else:
# Py2-compatible version for use with cython.
def __await__(self):
result = yield self
# StopIteration doesn't take args before py33,
# but Cython recognizes the args tuple.
e = StopIteration()
e.args = (result,)
raise e def cancel(self):
"""Cancel the operation, if possible. 如果可能的话取消操作
tornado对象不支持取消操作,所以总是返回False
"""
return False def cancelled(self):
# 同上
return False def running(self):
"""Returns True if this operation is currently running."""
return not self._done def done(self):
"""Returns True if the future has finished running."""
return self._done def _clear_tb_log(self):
self._log_traceback = False
if self._tb_logger is not None:
self._tb_logger.clear()
self._tb_logger = None def result(self, timeout=None):
"""If the operation succeeded, return its result. If it failed,
re-raise its exception. 如果操作成功,返回结果。如果失败则抛出异常 This method takes a ``timeout`` argument for compatibility with
`concurrent.futures.Future` but it is an error to call it
before the `Future` is done, so the ``timeout`` is never used.
"""
self._clear_tb_log()
if self._result is not None:
return self._result
if self._exc_info is not None:
raise_exc_info(self._exc_info)
self._check_done()
return self._result def exception(self, timeout=None):
"""If the operation raised an exception, return the `Exception`
object. Otherwise returns None. This method takes a ``timeout`` argument for compatibility with
`concurrent.futures.Future` but it is an error to call it
before the `Future` is done, so the ``timeout`` is never used.
"""
self._clear_tb_log()
if self._exc_info is not None:
return self._exc_info[1]
else:
self._check_done()
return None def add_done_callback(self, fn):
"""Attaches the given callback to the `Future`. 将callback附加到 It will be invoked with the `Future` as its argument when the Future
has finished running and its result is available. In Tornado
consider using `.IOLoop.add_future` instead of calling
`add_done_callback` directly.
"""
if self._done:
fn(self)
else:
self._callbacks.append(fn) def set_result(self, result):
"""Sets the result of a ``Future``. 将 result 设置为该future对象的结果 It is undefined to call any of the ``set`` methods more than once
on the same object.
"""
self._result = result
self._set_done() def set_exception(self, exception):
"""Sets the exception of a ``Future.``"""
self.set_exc_info(
(exception.__class__,
exception,
getattr(exception, '__traceback__', None))) def exc_info(self):
"""Returns a tuple in the same format as `sys.exc_info` or None. .. versionadded:: 4.0
"""
self._clear_tb_log()
return self._exc_info def set_exc_info(self, exc_info):
"""Sets the exception information of a ``Future.`` Preserves tracebacks on Python 2. .. versionadded:: 4.0
"""
self._exc_info = exc_info
self._log_traceback = True
if not _GC_CYCLE_FINALIZERS:
self._tb_logger = _TracebackLogger(exc_info) try:
self._set_done()
finally:
# Activate the logger after all callbacks have had a
# chance to call result() or exception().
if self._log_traceback and self._tb_logger is not None:
self._tb_logger.activate()
self._exc_info = exc_info def _check_done(self):
if not self._done:
raise Exception("DummyFuture does not support blocking for results") def _set_done(self):
# 执行结束(成功)后的操作。
self._done = True
for cb in self._callbacks:
try:
cb(self)
except Exception:
app_log.exception('Exception in callback %r for %r', cb, self)
self._callbacks = None # On Python 3.3 or older, objects with a destructor part of a reference
# cycle are never destroyed. It's no longer the case on Python 3.4 thanks to
# the PEP 442.
if _GC_CYCLE_FINALIZERS:
def __del__(self):
if not self._log_traceback:
# set_exception() was not called, or result() or exception()
# has consumed the exception
return tb = traceback.format_exception(*self._exc_info) app_log.error('Future %r exception was never retrieved: %s',
self, ''.join(tb).rstrip())

Future源码

二  gen.coroutine装饰器

tornado中的协程是通过tornado.gen中的coroutine装饰器实现的:

def coroutine(func, replace_callback=True):
return _make_coroutine_wrapper(func, replace_callback=True)
_make_coroutine_wrapper :
def _make_coroutine_wrapper(func, replace_callback):
@functools.wraps(func)
def wrapper(*args, **kwargs):
'''
大体过程:
future = TracebackFuture()
result = func(*args, **kwargs)
if isinstance(result, GeneratorType):
yielded = next(result)
Runner(result, future, yielded)
return future
'''
future = TracebackFuture() # TracebackFuture = Future if replace_callback and 'callback' in kwargs:
callback = kwargs.pop('callback')
IOLoop.current().add_future(future, lambda future: callback(future.result())) try:
result = func(*args, **kwargs) # 执行func,若func中包含yield,则返回一个generator对象
except (Return, StopIteration) as e:
result = _value_from_stopiteration(e)
except Exception:
future.set_exc_info(sys.exc_info())
return future
else:
if isinstance(result, GeneratorType): # 判断其是否为generator对象
try:
orig_stack_contexts = stack_context._state.contexts
yielded = next(result) # 第一次执行
if stack_context._state.contexts is not orig_stack_contexts:
yielded = TracebackFuture()
yielded.set_exception(
stack_context.StackContextInconsistentError(
'stack_context inconsistency (probably caused '
'by yield within a "with StackContext" block)'))
except (StopIteration, Return) as e:
future.set_result(_value_from_stopiteration(e))
except Exception:
future.set_exc_info(sys.exc_info())
else:
Runner(result, future, yielded)  # Runner(result, future, yield)
try:
return future            
finally:
future = None
future.set_result(result)
return future
return wrapper

先来看一下大体过程:

  1  首先生成一个Future对象

  2  运行该被装饰函数并将结果赋值给result。 在这里因为tornado的'异步'实现是基于generator的,所以一般情况下 result是一个generator对象

  3  yielded = next(result)  执行到被装饰函数的第一次yield,将结果赋值给yielded。一般情况下,yielded很大情况下是一个Future对象。

  4  Runner(result, future, yielded)

  5  return future

除了第4步以外其他都很好理解,所以来了解一下第四步Runner()干了些啥:

三  Runner()类

1 为什么要有Runner()?或者说Runner()的作用是什么?

Runner()可以自动的将异步操作的结果send()至生成器中止的地方

tornado的协程或者说异步是基于generator实现的,generator较为常用的有两个方法:send() next() ,关于这两个方法的流程分析在这

很多情况下会有generator的嵌套。比如说经常会yield 一个generator。当A生成器yield B生成器时,分两步:

  1 我们首先中止A的执行转而执行B

  2 当B执行完成后,我们需要将B的结果send()至A中止的地方,继续执行A

Runner()主要就是来做这些的,也就是控制生成器的执行与中止,并在合适的情况下使用send()方法同时传入B生成器的结果唤醒A生成器。

来看一个简单例子:

def run():
print('start running')
yield 2 # 跑步用时2小时 def eat():
print('start eating')
yield 1 # 吃饭用时1小时 def time():
run_time = yield run()
eat_time = yield eat()
print(run_time+eat_time) def Runner(gen):
r = next(gen)
return r t = time()
try:
action = t.send(Runner(next(t)))
t.send(Runner(action))
except StopIteration:
pass

上例中的Runner()仅仅完成了第一步,我们还需要手动的执行第二步,而tornado的gen的Runner()则做了全套奥!

2 剖析Runner()

在Runner()中主要有三个方法__init__  handle_yield  run:

class Runner(object):
def __init__(self, gen, result_future, first_yielded):
self.gen = gen # 一个generator对象
self.result_future = result_future # 一个Future对象
self.future = _null_future # 一个刚初始化的Future对象 _null_future = Future(); _null_future.set_result(None)
self.yield_point = None
self.pending_callbacks = None
self.results = None
self.running = False
self.finished = False
self.had_exception = False
self.io_loop = IOLoop.current()
self.stack_context_deactivate = None
if self.handle_yield(first_yielded):
self.run() ………… 部分方法省略
def run(self):
"""Starts or resumes the generator, running until it reaches a
yield point that is not ready.
"""
if self.running or self.finished:
return
try:
self.running = True
while True:
future = self.future
if not future.done():
return
self.future = None
try:
orig_stack_contexts = stack_context._state.contexts
exc_info = None try:
value = future.result()
except Exception:
self.had_exception = True
exc_info = sys.exc_info() if exc_info is not None:
yielded = self.gen.throw(*exc_info)
exc_info = None
else:
yielded = self.gen.send(value) if stack_context._state.contexts is not orig_stack_contexts:
self.gen.throw(
stack_context.StackContextInconsistentError(
'stack_context inconsistency (probably caused '
'by yield within a "with StackContext" block)'))
except (StopIteration, Return) as e:
self.finished = True
self.future = _null_future
if self.pending_callbacks and not self.had_exception:
# If we ran cleanly without waiting on all callbacks
# raise an error (really more of a warning). If we
# had an exception then some callbacks may have been
# orphaned, so skip the check in that case.
raise LeakedCallbackError(
"finished without waiting for callbacks %r" %
self.pending_callbacks)
self.result_future.set_result(_value_from_stopiteration(e))
self.result_future = None
self._deactivate_stack_context()
return
except Exception:
self.finished = True
self.future = _null_future
self.result_future.set_exc_info(sys.exc_info())
self.result_future = None
self._deactivate_stack_context()
return
if not self.handle_yield(yielded):
return
finally:
self.running = False def handle_yield(self, yielded):
if _contains_yieldpoint(yielded): # 检查其中是否包含YieldPoint
yielded = multi(yielded) if isinstance(yielded, YieldPoint): # Base class for objects that may be yielded from the generator
self.future = TracebackFuture() # 一个刚刚初始化的Future对象 def start_yield_point():
try:
yielded.start(self)
if yielded.is_ready():
self.future.set_result(yielded.get_result())
else:
self.yield_point = yielded
except Exception:
self.future = TracebackFuture()
self.future.set_exc_info(sys.exc_info()) if self.stack_context_deactivate is None:
with stack_context.ExceptionStackContext(self.handle_exception) as deactivate:
self.stack_context_deactivate = deactivate def cb():
start_yield_point()
self.run()
self.io_loop.add_callback(cb)
return False
else:
start_yield_point()
else:
try:
self.future = convert_yielded(yielded)
except BadYieldError:
self.future = TracebackFuture()
self.future.set_exc_info(sys.exc_info()) if not self.future.done() or self.future is moment: # moment = Future()
self.io_loop.add_future(self.future, lambda f: self.run()) # 为该future添加callback
return False
return True

Runner()

2.1 __init__方法

__init__ 里面执行了一些初始化的操作,最主要是最后两句:

if self.handle_yield(first_yielded): # 运行
self.run()

2.2 handle_yield方法

handle_yield(self, yielded) 函数,这个函数顾名思义,就是用来处理yield返回的对象的。

首先我们假设yielded是一个Future对象(因为这是最常用的情况),这样的话代码就缩减了很多

def handle_yield(self, yielded):
self.future = convert_yielded(yielded) # 如果yielded是Future对象则原样返回
if not self.future.done() or self.future is moment: # moment是tornado初始化时就建立的一个Future对象,且被set_result(None)
self.io_loop.add_future(self.future, lambda f: self.run()) # 为该future添加callback
return False
return True

也就是干了三步:

  首先解析出self.future

  然后判断self.future对象是否已经被done(完成),如果没有的话为其添加回调函数,这个回调函数会执行self.run()

  返回self.future对象是否被done

总体来说,handle_yield返回yielded对象是否被set_done,如果没有则为yielded对象添加回调函数,这个回调函数执行self.run()

还有一个有趣的地方,就是上面代码的第四行:  self.io_loop.add_future(self.future, lambda f: self.run())

def add_future(self, future, callback):
# 为future添加一个回调函数,这个回调函数的作用是:将参数callback添加至self._callbacks中
# 大家思考一个问题: 如果某个Future对象被set_done,那么他的回调函数应该在什么时候执行?
# 是立即执行亦或者是将回调函数添加到IOLoop实例的_callbacks中进行统一执行?
# 虽然前者更简单,但导致回调函数的执行过于混乱,我们应该让所有满足执行条件的回调函数统一执行。显然后者更合理
# 而add_future()的作用就是这样
future.add_done_callback(lambda future: self.add_callback(callback, future)) def add_callback(self, callback, *args, **kwargs):
# 将callback添加至_callbacks列表中
self._callbacks.append(functools.partial(callback, *args, **kwargs))

2.3 run方法

再来看self.run()方法。这个方法实际上就是一个循环,不停的执行generator的send()方法,发送的值就是yielded的result。

我们可以将run()方法简化一下:

    def run(self):
"""Starts or resumes the generator, running until it reaches a
yield point that is not ready. 循环向generator中传递值,直到某个yield返回的yielded还没有被done
"""
try:
self.running = True
while True:
future = self.future  
if not future.done():
return
self.future = None      # 清空self.future
value = future.result()   # 获取future对象的结果
try:
yielded = self.gen.send(value)  # send该结果,并将self.gen返回的值赋值给yielded(一般情况下这也是个future对象)
except (StopIteration, Return) as e:
self.finished = True
self.future = _null_future
self.result_future.set_result(_value_from_stopiteration(e))
self.result_future = None
self._deactivate_stack_context()
return
if not self.handle_yield(yielded):  # 运行self.handler_yield(yielded),如果yielded对象没有被done,则直接返回;否则继续循环
return
finally:
self.running = False

总结:

  1 每一个Future对应一个异步操作

  2 该Future对象可以添加回调函数,当该异步操作完成后,需要对该Future对象设置set_done或者set_result,然后执行其所有的回调函数

  3 凡是使用了coroutine装饰器的generator函数都会返回一个Future对象,同时会不断为该generator,该generator每一次运行send()或者next()的返回结果yielded以及future对象运行Runner()

  4 Runner()会对generator不断进行send()或者next()操作。具体步骤是:上一个next()或者send()操作返回的yielded(一般是一个Future对象)被set_done后,将该yielded对象的结果send()至generator中,不断循环该操作,直到产生StopIteration或者Return异常(这表示该generator执行结束),这时会为该generator对应的Future对象set_result。

我们可以看到tornado的协程是基于generator的,generator可以通过yield关键字暂停执行,也可以通过next()或者send()恢复执行,同时send()可以向generator中传递值。

而将协程连接起来的纽带则是Future对象,每一个Future对象都对应着一个异步操作,我们可以为该对象添加许多回调函数,当异步操作完成后通过对Future对象进行set_done或者set_result就可以执行相关的回调函数。

提供动力的则是Runner(),他不停的将generator所yield的每一个future对象的结果send()至generator,当generator运行结束,他会进行最后的包装工作,对该generator所对应的Future对象执行set_result操作。

参考:

  http://blog.csdn.net/wyx819/article/details/45420017

  http://www.cnblogs.com/apexchu/p/4226784.html

深入tornado中的协程的更多相关文章

  1. python tornado TCPserver异步协程实例

    项目所用知识点 tornado socket tcpserver 协程 异步 tornado tcpserver源码抛析 在tornado的tcpserver文件中,实现了TCPServer这个类,他 ...

  2. lua中的协程

    lua中的协程和线程类似: 1. 协程拥有自己的独立的栈,局部变量,和指令: 2. 所有协程都可以共享全局变量: 3. 协程不能像线程那样并行执行,协程之间需要相互协调执行,同一个时刻只能运行一个协程 ...

  3. Unity中的协程(一)

    这篇文章很不错的问题,推荐阅读英文原版: Introduction to Coroutines Scripting with Coroutines   这篇文章转自:http://blog.csdn. ...

  4. python中的协程及实现

    1.协程的概念: 协程是一种用户态的轻量级线程.协程拥有自己的寄存器上下文和栈. 协程调度切换时,将寄存器上下文和栈保存到其他地方,在切换回来的时候,恢复先前保存的寄存器上下文和栈. 因此,协程能保留 ...

  5. fasthttp中的协程池实现

    fasthttp中的协程池实现 协程池可以控制并行度,复用协程.fasthttp 比 net/http 效率高很多倍的重要原因,就是利用了协程池.实现并不复杂,我们可以参考他的设计,写出高性能的应用. ...

  6. Golang 入门系列(六)理解Go中的协程(Goroutine)

    前面讲的都是一些Go 语言的基础知识,感兴趣的朋友可以先看看之前的文章.https://www.cnblogs.com/zhangweizhong/category/1275863.html. 今天就 ...

  7. python中的协程:greenlet和gevent

    python中的协程:greenlet和gevent 协程是一中多任务实现方式,它不需要多个进程或线程就可以实现多任务. 1.通过yield实现协程: 代码: import time def A(): ...

  8. xlua 实现协程替换Unity中的协程

    C#中的协程: IEnumerator ShowSpiritInfo() { UIMessageMgr.ShowMsgWait(true); DestroyUIModelInfo(); bool is ...

  9. [转]skynet Lua中的协程

    Lua中的协程 http://www.outsky.org/code/lua-coroutine.html Sep 6, 2014 Lua中的协程和其他变量一样,都是第一类值(first-class ...

随机推荐

  1. Ceph部署(二)RGW搭建

    背景 Ceph RGW简介 Ceph RGW基于librados,是为应用提供RESTful类型的对象存储接口.RGW提供两种类型的接口: 1) S3:兼容Amazon S3RESTful API: ...

  2. ASP.NET MVC4.0+ WebAPI+EasyUI+KnockOutJS快速开发框架 通用权限管理系统

    1.基于 ASP.NET MVC4.0 + WebAPI + EasyUI + Knockout 的架构设计开发 2.采用MVC的框架模式,具有耦合性低.重用性高.生命周期成本低.可维护性高.有利软件 ...

  3. excel 下拉级联,重新选第一个,清空后一个已赋值,并且改变后一个下拉的内容。

    在前面的部分,设置下拉级联,我们已经可以百度到很多视频,我就不再多说,而我搞了一天解决 的,是在俩菜单都有值的情况下,重新选第一个下拉,后面那个值怎么清除,是一个事件调用.上图. 其中"$H ...

  4. .NET中利用反射来实现自动映射两个对象中的数据成员

    在以前的项目开发之中,经常会遇到这样一个问题:比如在外面项目的架构设计之中,我们采用MVC和EntityFramework来构建一个Web应用程序.比如我们采用常用的多层架构,例如有Presentat ...

  5. 在.NET Core 上运行的 WordPress

    在.NET Core 上运行的 WordPress,无需安装PHP既可跨平台运行WordPress. 在Peachpie中实现PHP所需的功能数月后,现在终于可以运行一个真实的应用程序:WordPre ...

  6. for循环的表达规则,for循环的嵌套,跳转语句;穷举;迭代;异常处理

    for循环的基本格式 for(表达式1:表达式2:表达式3) { 循环体: } for循环的四要素 表达式1就是变量初始化:表达式2就是循环条件:表达式3是状态改变 static void Main( ...

  7. BOM基础(二)

    跟DOM一样,BOM其实也是由很多的API组成. 不过对于BOM来说,最痛苦的不是不记得API,而是明明记得这个这个API,却没有考虑到它的兼容性. 之前的文章中讲到了offset系列的属性,他的宽高 ...

  8. Struts文件下载

    /* 文件下载的先决条件 * 1. 在xml配置文件中必须配置一个type="stream"的result, result中不需要填写任何内容 * 2. 在Action中编写一个接 ...

  9. 二级C考点汇总

    1.变量命名的合法性2.数据类型的转换,分为强类型和隐式类型3.字符串:字符串的声明.定义和使用,通常结合数组和指针 4.数组:下标的转换及数组的顺序存储5.函数:声明.定义.调用,递归函数(如菲薄纳 ...

  10. 部署Cloudera Management for centos 7

    hadoop生态圈框架工具甚多,自己整合起来很是繁琐,特别是oozie以及hue结合来实现hive.mr.spark等定时依赖任务更是一步一个坑,为了减少踩坑,只好从apache hadoop,转向C ...