Hybrid Crystals

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 322    Accepted Submission(s): 191

Problem Description
> Kyber crystals, also called the living crystal or simply the kyber, and known as kaiburr crystals in ancient times, were rare, Force-attuned crystals that grew in nature and were found on scattered planets across the galaxy. They were used by the Jedi and the Sith in the construction of their lightsabers. As part of Jedi training, younglings were sent to the Crystal Caves of the ice planet of Ilum to mine crystals in order to construct their own lightsabers. The crystal's mix of unique lustre was called "the water of the kyber" by the Jedi. There were also larger, rarer crystals of great power and that, according to legends, were used at the heart of ancient superweapons by the Sith.
>
> — Wookieepedia

Powerful, the Kyber crystals are. Even more powerful, the Kyber crystals get combined together. Powered by the Kyber crystals, the main weapon of the Death Star is, having the firepower of thousands of Star Destroyers.

Combining Kyber crystals is not an easy task. The combination should have a specific level of energy to be stablized. Your task is to develop a Droid program to combine Kyber crystals.

Each crystal has its level of energy (i-th crystal has an energy level of ai). Each crystal is attuned to a particular side of the force, either the Light or the Dark. Light crystals emit positive energies, while dark crystals emit negative energies. In particular,

* For a light-side crystal of energy level ai, it emits +ai units of energy.
* For a dark-side crystal of energy level ai, it emits −ai units of energy.

Surprisingly, there are rare neutral crystals that can be tuned to either dark or light side. Once used, it emits either +ai or −ai units of energy, depending on which side it has been tuned to.

Given n crystals' energy levels ai and types bi (1≤i≤n), bi=N means the i-th crystal is a neutral one, bi=L means a Light one, and bi=D means a Dark one. The Jedi Council asked you to choose some crystals to form a larger hybrid crystal. To make sure it is stable, the final energy level (the sum of the energy emission of all chosen crystals) of the hybrid crystal must be exactly k.

Considering the NP-Hardness of this problem, the Jedi Council puts some additional constraints to the array such that the problem is greatly simplified.

First, the Council puts a special crystal of a1=1,b1=N.

Second, the Council has arranged the other n−1 crystals in a way that

ai≤∑j=1i−1aj[bj=N]+∑j=1i−1aj[bi=L∩bj=L]+∑j=1i−1aj[bi=D∩bj=D](2≤i≤n).

[cond] evaluates to 1 if cond holds, otherwise it evaluates to 0.

For those who do not have the patience to read the problem statements, the problem asks you to find whether there exists a set S⊆{1,2,…,n} and values si for all i∈S such that

∑i∈Sai∗si=k,

where si=1 if the i-th crystal is a Light one, si=−1 if the i-th crystal is a Dark one, and si∈{−1,1} if the i-th crystal is a neutral one.

 
Input
The first line of the input contains an integer T, denoting the number of test cases.

For each test case, the first line contains two integers n (1≤n≤103) and k (|k|≤106).

The next line contains n integer a1,a2,...,an (0≤ai≤103).

The next line contains n character b1,b2,...,bn (bi∈{L,D,N}).

 
Output
If there exists such a subset, output "yes", otherwise output "no".
 
Sample Input
2

5 9
1 1 2 3 4
N N N N N

6 -10
1 0 1 2 3 1
N L L L L D

 
Sample Output
yes
no
 
Source

/*
* @Author: lyuc
* @Date: 2017-08-17 16:25:54
* @Last Modified by: lyuc
* @Last Modified time: 2017-08-17 16:39:10
*/
/*
题意;有n个晶石,每个有三种属性,L,D,N,如果选了L的你可以+a[i],选D的你可以-a[i]
如果选了N的加减都可以,问你能不能凑成k 思路:这道题中的数能组成的数构成了一个连续区间.一开始只有a[1]的时候能够构成 [-1, 1]
中的所有整数.如果一堆数能够构成 [-a, b]中的所有整数, 这时候来了一个数 x. 如果 x
只能取正值的话, 如果有 x<=b, 那么就能够构成 [-a, b+x]的所有整数.如果 x 只能取负
值, 如果有 x <=y, 那么就能构成 [-a-x, b]的所有整数.如果 x 可正可负, 如果有 x <=≤min(x,y)
, 那么就能构成 [-a-x, b+x]中的所有整数. 然后题目中那个奇怪的不等式就保证了上面的"如果有"的条件.
*/ #include <bits/stdc++.h> #define MAXN 1005
#define MAXA 2 using namespace std; int t;
int n,k;
int a[MAXN];
char str[MAXN][MAXA];
int l,r; void init(){
l=;
r=;
} int main(){
//freopen("in.txt","r",stdin);
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&k);
init();
for(int i=;i<n;i++){
scanf("%d",&a[i]);
}
for(int i=;i<n;i++){
scanf("%s",str[i]);
}
for(int i=;i<n;i++){
if(str[i][]=='L'){
l-=a[i];
}else if(str[i][]=='D'){
r+=a[i];
}else{
l-=a[i];
r+=a[i];
}
}
if(k>){
if(k<=r){
puts("yes");
}else {
puts("no");
}
}else if(k<){
if(k>=l){
puts("yes");
}else{
puts("no");
}
}else{
puts("yes");
}
}
return ;
}

HDU 6140 Hybrid Crystals的更多相关文章

  1. 2017ACM暑期多校联合训练 - Team 8 1008 HDU 6140 Hybrid Crystals (模拟)

    题目链接 Problem Description Kyber crystals, also called the living crystal or simply the kyber, and kno ...

  2. HDU 6140 17多校8 Hybrid Crystals(思维题)

    题目传送: Hybrid Crystals Problem Description > Kyber crystals, also called the living crystal or sim ...

  3. 【2017 Multi-University Training Contest - Team 8】Hybrid Crystals

    [Link]:http://acm.hdu.edu.cn/showproblem.php?pid=6140 [Description] 等价于告诉你有n个物品,每个物品的价值为-a[i]或a[i],或 ...

  4. hdu 6140 思维

    题解:这道题中的数能组成的数构成了一个连续区间. 一开始只有 a1​​ 的时候能够构成 [-1, 1][−1,1] 中的所有整数. 如果一堆数能够构成 [-a, b][−a,b] 中的所有整数, 这时 ...

  5. HDU6140--Hybrid Crystals(思维)

    Hybrid Crystals Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)T ...

  6. 2017 Multi-University Training Contest - Team 8

    HDU6140 Hybrid Crystals 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6140 题目意思:这场多校是真的坑,题目爆长,心态爆炸, ...

  7. HDU 6118 度度熊的交易计划 【最小费用最大流】 (2017"百度之星"程序设计大赛 - 初赛(B))

    度度熊的交易计划 Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  8. HDU 6119 小小粉丝度度熊 【预处理+尺取法】(2017"百度之星"程序设计大赛 - 初赛(B))

    小小粉丝度度熊 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Sub ...

  9. HDU 6114 Chess 【组合数】(2017"百度之星"程序设计大赛 - 初赛(B))

    Chess Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

随机推荐

  1. GUI TextField

    GUI.TextField   public static function TextField(position: Rect, text: string): string; public stati ...

  2. Ansible系列(七):执行过程分析、异步模式和速度优化

    本文目录:1.1 ansible执行过程分析1.2 ansible并发和异步1.3 ansible的-t选项妙用1.4 优化ansible速度 1.4.1 设置ansible开启ssh长连接 1.4. ...

  3. vue 2 使用Bus.js进行兄弟(非父子)组件通信 简单案例

    vue2中废弃了$dispatch和$broadcast广播和分发事件的方法.父子组件中可以用props和$emit().如何实现非父子组件间的通信,可以通过实例一个vue实例Bus作为媒介,要相互通 ...

  4. python pyinstaller打包exe暗坑1

    环境 python2.7.9 win-xp 今天打包了一个小脚本,结果打开报错

  5. java复习要点(一)------- java语言的特点、java的工作原理、配置环境变量、java命令的使用

    一.java语言的特点: (1)简单并面向对象 (2)鲁棒并安全: java语言在编译及运行程序时,都要进行严格的检查,防止不匹配问题的发生.如果引用一个非法类型,或执行一个非法类型操作,java减肥 ...

  6. [mysql]ERROR 1364 (HY000): Field 'ssl_cipher' doesn't have a default value 解决方法

    在MySQL数据库中的mysql.user表中使用insert语句添加新用户时,可能会出现以下错误: ERROR 1364 (HY000): Field 'ssl_cipher' doesn't ha ...

  7. 简单Elixir游戏服设计- 游戏玩法介绍

    抄以前的,做了点修改. 到目前为止,我们完成了玩家的数据和进程建模,现在介绍游戏玩法. 为什么我们还不做客户端接入.协议指定呢?为什么还没有网关和数据存储呢.在我接手的游戏, 这些通常已经定下来了,我 ...

  8. Nginx平滑升级源码分析

    一.平滑升级步骤 1.重命名之前的sbin/nginx文件,将新的nginx文件放到sbin/目录下 #mv ./sbin/nginx ./sbin/nginx.old #cp ~/nginx ./s ...

  9. zoj1871steps 数学 水

                                                                                            zoj1871 题目大意 ...

  10. SVN版本控制图标经常延时显示或未显示问题解决方法

    项目中,使用svn经常遇到,文件或文件夹图标延时显示或未显示的问题,终于找到办法解决 客户端:TortoiseSVN