Hybrid Crystals

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 322    Accepted Submission(s): 191

Problem Description
> Kyber crystals, also called the living crystal or simply the kyber, and known as kaiburr crystals in ancient times, were rare, Force-attuned crystals that grew in nature and were found on scattered planets across the galaxy. They were used by the Jedi and the Sith in the construction of their lightsabers. As part of Jedi training, younglings were sent to the Crystal Caves of the ice planet of Ilum to mine crystals in order to construct their own lightsabers. The crystal's mix of unique lustre was called "the water of the kyber" by the Jedi. There were also larger, rarer crystals of great power and that, according to legends, were used at the heart of ancient superweapons by the Sith.
>
> — Wookieepedia

Powerful, the Kyber crystals are. Even more powerful, the Kyber crystals get combined together. Powered by the Kyber crystals, the main weapon of the Death Star is, having the firepower of thousands of Star Destroyers.

Combining Kyber crystals is not an easy task. The combination should have a specific level of energy to be stablized. Your task is to develop a Droid program to combine Kyber crystals.

Each crystal has its level of energy (i-th crystal has an energy level of ai). Each crystal is attuned to a particular side of the force, either the Light or the Dark. Light crystals emit positive energies, while dark crystals emit negative energies. In particular,

* For a light-side crystal of energy level ai, it emits +ai units of energy.
* For a dark-side crystal of energy level ai, it emits −ai units of energy.

Surprisingly, there are rare neutral crystals that can be tuned to either dark or light side. Once used, it emits either +ai or −ai units of energy, depending on which side it has been tuned to.

Given n crystals' energy levels ai and types bi (1≤i≤n), bi=N means the i-th crystal is a neutral one, bi=L means a Light one, and bi=D means a Dark one. The Jedi Council asked you to choose some crystals to form a larger hybrid crystal. To make sure it is stable, the final energy level (the sum of the energy emission of all chosen crystals) of the hybrid crystal must be exactly k.

Considering the NP-Hardness of this problem, the Jedi Council puts some additional constraints to the array such that the problem is greatly simplified.

First, the Council puts a special crystal of a1=1,b1=N.

Second, the Council has arranged the other n−1 crystals in a way that

ai≤∑j=1i−1aj[bj=N]+∑j=1i−1aj[bi=L∩bj=L]+∑j=1i−1aj[bi=D∩bj=D](2≤i≤n).

[cond] evaluates to 1 if cond holds, otherwise it evaluates to 0.

For those who do not have the patience to read the problem statements, the problem asks you to find whether there exists a set S⊆{1,2,…,n} and values si for all i∈S such that

∑i∈Sai∗si=k,

where si=1 if the i-th crystal is a Light one, si=−1 if the i-th crystal is a Dark one, and si∈{−1,1} if the i-th crystal is a neutral one.

 
Input
The first line of the input contains an integer T, denoting the number of test cases.

For each test case, the first line contains two integers n (1≤n≤103) and k (|k|≤106).

The next line contains n integer a1,a2,...,an (0≤ai≤103).

The next line contains n character b1,b2,...,bn (bi∈{L,D,N}).

 
Output
If there exists such a subset, output "yes", otherwise output "no".
 
Sample Input
2

5 9
1 1 2 3 4
N N N N N

6 -10
1 0 1 2 3 1
N L L L L D

 
Sample Output
yes
no
 
Source

/*
* @Author: lyuc
* @Date: 2017-08-17 16:25:54
* @Last Modified by: lyuc
* @Last Modified time: 2017-08-17 16:39:10
*/
/*
题意;有n个晶石,每个有三种属性,L,D,N,如果选了L的你可以+a[i],选D的你可以-a[i]
如果选了N的加减都可以,问你能不能凑成k 思路:这道题中的数能组成的数构成了一个连续区间.一开始只有a[1]的时候能够构成 [-1, 1]
中的所有整数.如果一堆数能够构成 [-a, b]中的所有整数, 这时候来了一个数 x. 如果 x
只能取正值的话, 如果有 x<=b, 那么就能够构成 [-a, b+x]的所有整数.如果 x 只能取负
值, 如果有 x <=y, 那么就能构成 [-a-x, b]的所有整数.如果 x 可正可负, 如果有 x <=≤min(x,y)
, 那么就能构成 [-a-x, b+x]中的所有整数. 然后题目中那个奇怪的不等式就保证了上面的"如果有"的条件.
*/ #include <bits/stdc++.h> #define MAXN 1005
#define MAXA 2 using namespace std; int t;
int n,k;
int a[MAXN];
char str[MAXN][MAXA];
int l,r; void init(){
l=;
r=;
} int main(){
//freopen("in.txt","r",stdin);
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&k);
init();
for(int i=;i<n;i++){
scanf("%d",&a[i]);
}
for(int i=;i<n;i++){
scanf("%s",str[i]);
}
for(int i=;i<n;i++){
if(str[i][]=='L'){
l-=a[i];
}else if(str[i][]=='D'){
r+=a[i];
}else{
l-=a[i];
r+=a[i];
}
}
if(k>){
if(k<=r){
puts("yes");
}else {
puts("no");
}
}else if(k<){
if(k>=l){
puts("yes");
}else{
puts("no");
}
}else{
puts("yes");
}
}
return ;
}

HDU 6140 Hybrid Crystals的更多相关文章

  1. 2017ACM暑期多校联合训练 - Team 8 1008 HDU 6140 Hybrid Crystals (模拟)

    题目链接 Problem Description Kyber crystals, also called the living crystal or simply the kyber, and kno ...

  2. HDU 6140 17多校8 Hybrid Crystals(思维题)

    题目传送: Hybrid Crystals Problem Description > Kyber crystals, also called the living crystal or sim ...

  3. 【2017 Multi-University Training Contest - Team 8】Hybrid Crystals

    [Link]:http://acm.hdu.edu.cn/showproblem.php?pid=6140 [Description] 等价于告诉你有n个物品,每个物品的价值为-a[i]或a[i],或 ...

  4. hdu 6140 思维

    题解:这道题中的数能组成的数构成了一个连续区间. 一开始只有 a1​​ 的时候能够构成 [-1, 1][−1,1] 中的所有整数. 如果一堆数能够构成 [-a, b][−a,b] 中的所有整数, 这时 ...

  5. HDU6140--Hybrid Crystals(思维)

    Hybrid Crystals Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)T ...

  6. 2017 Multi-University Training Contest - Team 8

    HDU6140 Hybrid Crystals 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6140 题目意思:这场多校是真的坑,题目爆长,心态爆炸, ...

  7. HDU 6118 度度熊的交易计划 【最小费用最大流】 (2017"百度之星"程序设计大赛 - 初赛(B))

    度度熊的交易计划 Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  8. HDU 6119 小小粉丝度度熊 【预处理+尺取法】(2017"百度之星"程序设计大赛 - 初赛(B))

    小小粉丝度度熊 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Sub ...

  9. HDU 6114 Chess 【组合数】(2017"百度之星"程序设计大赛 - 初赛(B))

    Chess Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

随机推荐

  1. PostgreSQL使用MyBatis,insert时返回主键

    MyBatis中普通的insert语句是这样的: <insert id="insert" parameterType="com.xxx.xxx.xxDo" ...

  2. getOutputStream() has already been called for this response

    错误日志里偶尔会有getOutputStream() has already been called for this response这个错误 最近发现了高概率复现条件,所以顺手解决了一下: 首先根 ...

  3. 防止html5的video标签在iphone中自动全屏

    问题: 当在iphone中打开html5页面中的video视频时,会默认调取系统播放器,全屏播放视频资源. 解决方式: 1. 首先在html5页面的video标签中添加webkit-playsinli ...

  4. 【机器学习实战】第6章 支持向量机(Support Vector Machine / SVM)

    第6章 支持向量机 <script type="text/javascript" src="http://cdn.mathjax.org/mathjax/lates ...

  5. C#中回车出发事件(+收藏)

    本文给大家介绍如何在c# winform中实现回车事件和回车键触发按钮的完美写法 我们常常要在c# winform中实现回车(enter)提交功能,这样比手动按按钮触发更快. 要完成回车按按钮功能,只 ...

  6. Windows下MySQL5.6.21安装步骤

    01.把 mysql-advanced-5.6.17-winx64.zip 解压到自定义 D:\mysql-5.6.17-W64 或 D:\mysql-advanced-5.6.17-winx64 目 ...

  7. webpack2使用ch2-entry和output简要说明

    1 entry打包入口 打包字符串和数组 const webpack = require('webpack'), path = require('path'); module.exports = { ...

  8. zoj3961(区间问题)

    点击打开zoj1961Let's Chat Time Limit: 1 Second      Memory Limit:65536 KB ACM (ACMers' Chatting Messenge ...

  9. Spring+JUnit4单元测试入门

    (一).JUnit介绍 JUnit是Java中最有名的单元测试框架,多数Java的开发环境都已经集成了JUnit作为单元测试的工具.好的单元测试能极大的提高开发效率和代码质量. Maven导入juni ...

  10. 使用微软URLRewriter.dll的url实现任意后缀名重写

    <?xml version="1.0"?> <!--先引用URLRewriter.dll,放置于Bin目录--> <configuration> ...