Hadoop之HelloWorld
Hadoop开始:
1. 下载最新的发行版,解压到你喜欢的路径。
2. 配置,Hadoop的配置文件位于~/hadoop/conf/ 目录下。这里我先只配置了core-site.xml文件。
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?> <!-- Put site-specific property overrides in this file. --> <configuration>
<property>
<name>fs.default.name</name>
<value>hdfs://localhost:9000</value>
</property>
<property>
<name>hadoop.tmp.dir</name>
<value>/home/Jack/dfs</value>
</property>
</configuration>
上面我指定了hadoop的DFS文件系统的路径。
3. 格式化DFS系统,输入命令: > ./hadoop namenode -format
4. 启动Hadoop,输入命令: > ./start-all.sh
**到这里Hadoop的启动已经正常,可以在端口50070和50030查看集群的状态。
======================================================================
第一个程序:HadoopHelloWorld
import java.io.IOException;
import java.util.*;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapred.*; public class HadoopHelloWorld { public static class Map extends MapReduceBase implements Mapper<LongWritable,Text,Text,IntWritable> {
private final static IntWritable one=new IntWritable(1);
private Text word=new Text(); public void map(LongWritable key, Text value, OutputCollector<Text,IntWritable> output, Reporter reporter)
throws IOException {
String line= value.toString();
StringTokenizer tokenizer=new StringTokenizer(line);
while(tokenizer.hasMoreTokens()) {
word.set(tokenizer.nextToken());
output.collect(word, one);
}
}
} public static class Reduce extends MapReduceBase implements Reducer<Text,IntWritable,Text,IntWritable> {
public void reduce(Text key,Iterator<IntWritable> values,OutputCollector<Text,IntWritable>output, Reporter reporter)
throws IOException{
int sum=0;
while(values.hasNext()) {
sum+=values.next().get();
}
output.collect(key, new IntWritable(sum)); }
} public static void main(String args[]) throws Exception {
JobConf conf=new JobConf(HadoopHelloWorld.class);
conf.setJobName("wordcount"); conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class); conf.setMapperClass(Map.class);
conf.setReducerClass(Reduce.class); conf.setInputFormat(TextInputFormat.class);
conf.setOutputFormat(TextOutputFormat.class); FileInputFormat.setInputPaths(conf, new Path(args[0]));
FileOutputFormat.setOutputPath(conf, new Path(args[1])); JobClient.runJob(conf);
} }
HadoopHelloWorld
需要引入的基础包:
JRE system Library
Hadoop-core.jar
commons-logging.jar
说明一下,别的文档中没有将需要commons-logging.jar 这个包,可以我的没有这个包一直报错。java.lang.NoClassDefFoundError: org/apache/commons/logging/LogFactory
以上工作做好了之后,编译HadoopHelloWorld.java文件就好,将生成的class文件放入文件夹~/source/java2013/HadoopHelloWorld/,然后打成一个jar包。
[Jack@win bin]$ jar -cvf HadoopHelloWorld.jar -C ~/source/java2013/HadoopHelloWorld/ .
上传2个input文件作为程序输入[ file01,file02 ]。
[Jack@win bin]$./ hadoop fs -mkdir input
[Jack@win bin]$ ./hadoop dfs -put ~/source/java2012/FirstJar/input/file* input
运行程序:
[Jack@win bin]$./hadoop jar HadoopHelloWorld.jar HadoopHelloWorld input output
13/06/20 03:16:44 WARN mapred.JobClient: Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.
13/06/20 03:16:45 INFO util.NativeCodeLoader: Loaded the native-hadoop library
13/06/20 03:16:45 WARN snappy.LoadSnappy: Snappy native library not loaded
13/06/20 03:16:45 INFO mapred.FileInputFormat: Total input paths to process : 4
13/06/20 03:16:45 INFO mapred.JobClient: Running job: job_201306200226_0002
13/06/20 03:16:46 INFO mapred.JobClient: map 0% reduce 0%
13/06/20 03:16:59 INFO mapred.JobClient: map 40% reduce 0%
13/06/20 03:17:05 INFO mapred.JobClient: map 80% reduce 0%
13/06/20 03:17:08 INFO mapred.JobClient: map 80% reduce 26%
13/06/20 03:17:11 INFO mapred.JobClient: map 100% reduce 26%
13/06/20 03:17:23 INFO mapred.JobClient: map 100% reduce 100%
13/06/20 03:17:28 INFO mapred.JobClient: Job complete: job_201306200226_0002
13/06/20 03:17:28 INFO mapred.JobClient: Counters: 30
13/06/20 03:17:28 INFO mapred.JobClient: Job Counters
13/06/20 03:17:28 INFO mapred.JobClient: Launched reduce tasks=1
13/06/20 03:17:28 INFO mapred.JobClient: SLOTS_MILLIS_MAPS=32074
13/06/20 03:17:28 INFO mapred.JobClient: Total time spent by all reduces waiting after reserving slots (ms)=0
13/06/20 03:17:28 INFO mapred.JobClient: Total time spent by all maps waiting after reserving slots (ms)=0
13/06/20 03:17:28 INFO mapred.JobClient: Launched map tasks=5
13/06/20 03:17:28 INFO mapred.JobClient: Data-local map tasks=3
13/06/20 03:17:28 INFO mapred.JobClient: SLOTS_MILLIS_REDUCES=23534
13/06/20 03:17:28 INFO mapred.JobClient: File Input Format Counters
13/06/20 03:17:28 INFO mapred.JobClient: Bytes Read=54
13/06/20 03:17:28 INFO mapred.JobClient: File Output Format Counters
13/06/20 03:17:28 INFO mapred.JobClient: Bytes Written=41
13/06/20 03:17:28 INFO mapred.JobClient: FileSystemCounters
13/06/20 03:17:28 INFO mapred.JobClient: FILE_BYTES_READ=104
13/06/20 03:17:28 INFO mapred.JobClient: HDFS_BYTES_READ=541
13/06/20 03:17:28 INFO mapred.JobClient: FILE_BYTES_WRITTEN=128481
13/06/20 03:17:28 INFO mapred.JobClient: HDFS_BYTES_WRITTEN=41
13/06/20 03:17:28 INFO mapred.JobClient: Map-Reduce Framework
13/06/20 03:17:28 INFO mapred.JobClient: Map output materialized bytes=128
13/06/20 03:17:28 INFO mapred.JobClient: Map input records=2
13/06/20 03:17:28 INFO mapred.JobClient: Reduce shuffle bytes=122
13/06/20 03:17:28 INFO mapred.JobClient: Spilled Records=16
13/06/20 03:17:28 INFO mapred.JobClient: Map output bytes=82
13/06/20 03:17:28 INFO mapred.JobClient: Total committed heap usage (bytes)=912719872
13/06/20 03:17:28 INFO mapred.JobClient: CPU time spent (ms)=5190
13/06/20 03:17:28 INFO mapred.JobClient: Map input bytes=50
13/06/20 03:17:28 INFO mapred.JobClient: SPLIT_RAW_BYTES=487
13/06/20 03:17:28 INFO mapred.JobClient: Combine input records=0
13/06/20 03:17:28 INFO mapred.JobClient: Reduce input records=8
13/06/20 03:17:28 INFO mapred.JobClient: Reduce input groups=5
13/06/20 03:17:28 INFO mapred.JobClient: Combine output records=0
13/06/20 03:17:28 INFO mapred.JobClient: Physical memory (bytes) snapshot=932745216
13/06/20 03:17:28 INFO mapred.JobClient: Reduce output records=5
13/06/20 03:17:28 INFO mapred.JobClient: Virtual memory (bytes) snapshot=2390478848
13/06/20 03:17:28 INFO mapred.JobClient: Map output records=8
Result
Hadoop之HelloWorld的更多相关文章
- 在eclipse上跑hadoop的helloworld
关于hadoop的用处什么我就不说了,在这里记录下在eclipse上第一次跑hadoop遇到的问题吧~ hadoop的安装我就不说啦,网上教程一大堆~我直接用的公司的Linux上的hadoop. ec ...
- Hadoop版Helloworld之wordcount运行示例
1.编写一个统计单词数量的java程序,并命名为wordcount.java,代码如下: import java.io.IOException; import java.util.StringToke ...
- Hadoop 调研笔记
由于从各光伏电站采集的数据量较大,必须解决海量数据的查询.分析的问题.目前主要考虑两种方式:1. Hadoop大数据技术:2. Oracle(数据仓库)+BI: 本文仅介绍hadoop的技术 ...
- Hadoop阅读笔记(一)——强大的MapReduce
前言:来园子已经有8个月了,当初入园凭着满腔热血和一脑门子冲动,给自己起了个响亮的旗号“大数据 小世界”,顿时有了种世界都是我的,世界都在我手中的赶脚.可是......时光飞逝,岁月如梭~~~随手一翻 ...
- 如何在Hadoop的MapReduce程序中处理JSON文件
简介: 最近在写MapReduce程序处理日志时,需要解析JSON配置文件,简化Java程序和处理逻辑.但是Hadoop本身似乎没有内置对JSON文件的解析功能,我们不得不求助于第三方JSON工具包. ...
- Hadoop实战之四~hadoop作业调度详解(2)
这篇文章将接着上一篇wordcount的例子,抽象出最简单的过程,一探MapReduce的运算过程中,其系统调度到底是如何运作的. 情况一:数据和运算分开的情况 wordcount这个例子的是hado ...
- Hadoop集群配置搭建
环境:Centos 6.9,Hadoop 2.7.1,JDK 1.8.0_161,Maven 3.3.9 前言: 1.配置一台master服务器,两台或多台slave服务器. 2.master可 ...
- How to Run a .Jar Java File
.jar files are used for archiving, archive unpacking. One of the essential features of jar file is l ...
- shell基本用法
shell是一个命令行解释器,它接收应用程序/ 用户命令,然后调用操作系统内核:功能强大的编程语言: 1. Shell解析器 Linux提供的Shell解析器有: [kris@hadoop datas ...
随机推荐
- Android 任何位置的可移动悬浮窗
刚好要做这块的东西,所以网上翻了下资料,百度出来的基本上都是:默认起始位置左上角,还不能改动,一改动起始位置,第二次拖动就不正常了~~ 下面直接附上任意位置可拖动的源码(由于是demo写的比较乱): ...
- [图形学] Chp8.4 OpenGL 二维观察函数——视口
这节有几个显示窗口的控制函数,可以调整视口,创建子窗口,最小化为图标,设置图标名称,隐藏显示等. gluOrtho2D (xwmin, xwmax, ywmin, ywmax); // 定义二维裁剪窗 ...
- 从一个针对ASP.NET MVC框架的Controller.Action的请求处理顺序来说整个请求过程。
下面引用的所有代码都来自ASP.NET MVC的源码,但是可能只选取每个方法的其中一部分. System.Web.Routing.UrlRoutingModule在管道事件中注册PostResolve ...
- Mac之OS系统下搭建JavaEE环境 <五> 之Mysql数据库的安装及配置
这里将推荐两款 集成的Mysql环境 十分轻便好用,MAMP 和 XAMPP MAMP XAMPP 1.MAMP下载 官网: https://www.mamp.info/en/ 下载安装即可使用 MA ...
- CentOS 6.9上安装mysql-5.6.36
CentOS 6.9上安装mysql-5.6.36 1.准备数据存放的文件系统 新建一个逻辑卷,并将其挂载至特定目录即可.这里不再给出过程. 这里假设其逻辑卷的挂载目录为/data,而后需要创建/da ...
- Python collections模块总结
Python collections模块总结 除了我们使用的那些基础的数据结构,还有包括其它的一些模块提供的数据结构,有时甚至比基础的数据结构还要好用. collections ChainMap 这是 ...
- LoadRunner接口测试Error -27225报错解决
今天依照规范写了一个接口测试脚本,再执行的时候报Error -27225,核对了接口字段和字段值没发现错误,百度搜Error -27225错误没有相关解释.这个问题经过溯源找到了问题的所在,为了互帮互 ...
- C++第三篇--程序结构
C++第三篇--程序结构 1. 初识程序结构 将类中的成员函数全部放在类外实现,类中只负责声明该函数 person.cpp #include <stdio.h> class Person{ ...
- if __name__ == '__main__' 如何正确理解
今天有个初学Python 的朋友问我这个问题,他说在网上好多回答他都不太理解.所以这里我来做说一下,希望能把这个问题说明白. 先举一个例子:假设我们有一个add.py文件,里面的代码是这样: def ...
- 前端框架之bootstrap
一.bootstrap按钮 1.按钮 <button class="btn btn-default">按钮</button><button class ...