机器学习数学笔记|偏度与峰度及其python实现

觉得有用的话,欢迎一起讨论相互学习~

本博客为七月在线邹博老师机器学习数学课程学习笔记

为七月在线打call!!

课程传送门

  • 对于随机变量X,X的K阶原点矩为
    \[E(X^{k})
    \]

  • X的K阶中心矩为
    \[E([X-E(X)]^{k})
    \]

  • 期望实际上是随机变量X的1阶原点矩,方差实际上是随机变量X的2阶中心矩
  • 变异系数(Coefficient of Variation):标准差与均值(期望)的比值称为变异系数,记为C.V
  • 偏度Skewness(三阶)
  • 峰度Kurtosis(四阶)

偏度与峰度

利用matplotlib模拟偏度和峰度

计算期望和方差

import matplotlib.pyplot as plt
import math
import numpy as np
def calc(data):
n=len(data) # 10000个数
niu=0.0 # niu表示平均值,即期望.
niu2=0.0 # niu2表示平方的平均值
niu3=0.0 # niu3表示三次方的平均值
for a in data:
niu += a
niu2 += a**2
niu3 += a**3
niu /= n
niu2 /= n
niu3 /= n
sigma = math.sqrt(niu2 - niu*niu)
return [niu,sigma,niu3]

\[niu=\bar{X_{i}}即期望
\]

\[niu2=\frac{\sum_{i=1}^{n}X_{i}^{2}}{n}
\]

\[niu3=\frac{\sum_{i=1}^{n}X_{i}^{3}}{n}
\]

  • sigma表示标准差公式为
    \[\sigma=\sqrt{E(x^{2})-E(x)^{2}}
    \]

    \[用python语言表示即为sigma = math.sqrt(niu2 - niu*niu)
    \]

  • 返回值为[期望,标准差,\(E(x^{3})\)]
  • PS:我们知道期望E(X)的计算公式为
    \[E(X)=\sum_{i=1}^{n}p(i)x(i)-----(1)
    \]

    这里我们X一个事件p(i)表示事件出现的概率,x(i)表示事件所给予事件的权值.

  • 我们直接利用
    \[E(x)=\bar{X_{i}}----(2)
    \]

    表示期望应当明确

    1. (2)公式中\(X_{i}是利用numpy中的伪随机数生成的,其均值用于表示期望\)
    2. 此时(1)公式中对事件赋予的权值默认为1,即公式的本来面目为

    \[E(x)=\bar{(X_{i}*1)}
    \]

计算偏度和峰度

def calc_stat(data):
[niu, sigma, niu3]=calc(data)
n=len(data)
niu4=0.0 # niu4计算峰度计算公式的分子
for a in data:
a -= niu
niu4 += a**4
niu4 /= n skew =(niu3 -3*niu*sigma**2-niu**3)/(sigma**3) # 偏度计算公式
kurt=niu4/(sigma**4) # 峰度计算公式:下方为方差的平方即为标准差的四次方
return [niu, sigma,skew,kurt]

利用matplotlib模拟图像

if __name__ == "__main__":
data = list(np.random.randn(10000)) # 满足高斯分布的10000个数
data2 = list(2*np.random.randn(10000)) # 将满足好高斯分布的10000个数乘以两倍,方差变成四倍
data3 =[x for x in data if x>-0.5] # 取data中>-0.5的值
data4 = list(np.random.uniform(0,4,10000)) # 取0~4的均匀分布
[niu, sigma, skew, kurt] = calc_stat(data)
[niu_2, sigma2, skew2, kurt2] = calc_stat(data2)
[niu_3, sigma3, skew3, kurt3] = calc_stat(data3)
[niu_4, sigma4, skew4, kurt4] = calc_stat(data4)
print (niu, sigma, skew, kurt)
print (niu2, sigma2, skew2, kurt2)
print (niu3, sigma3, skew3, kurt3)
print (niu4, sigma4, skew4, kurt4)
info = r'$\mu=%.2f,\ \sigma=%.2f,\ skew=%.2f,\ kurt=%.2f$' %(niu,sigma, skew, kurt) # 标注
info2 = r'$\mu=%.2f,\ \sigma=%.2f,\ skew=%.2f,\ kurt=%.2f$' %(niu_2,sigma2, skew2, kurt2)
info3 = r'$\mu=%.2f,\ \sigma=%.2f,\ skew=%.2f,\ kurt=%.2f$' %(niu_3,sigma3, skew3, kurt3)
plt.text(1,0.38,info,bbox=dict(facecolor='red',alpha=0.25))
plt.text(1,0.35,info2,bbox=dict(facecolor='green',alpha=0.25))
plt.text(1,0.32,info3,bbox=dict(facecolor='blue',alpha=0.25))
plt.hist(data,100,normed=True,facecolor='r',alpha=0.9)
plt.hist(data2,100,normed=True,facecolor='g',alpha=0.8)
plt.hist(data4,100,normed=True,facecolor='b',alpha=0.7)
plt.grid(True)
plt.show()

  • 图形表示的是利用numpy随机数生成函数生成的随机数的统计分布,利用matplotlib.pyplot.hist绘制的直方图.即是出现数字的分布统计,并且是归一化到0~1区间后的结果.
  • 即横轴表示数字,纵轴表示在1000个随机数中横轴对应的数出现的百分比.若不使用归一化横轴表示数字(normed=False),纵轴表示出现的次数.
  • 若不使用归一化--纵轴表示出现次数,

  • 关于matplotlib.pyplot.hist函数
n, bins, patches = plt.hist(arr, bins=10, normed=0, facecolor='black', edgecolor='black',alpha=1,histtype='b')
hist的参数非常多,但常用的就这六个,只有第一个是必须的,后面四个可选 arr: 需要计算直方图的一维数组 bins: 直方图的柱数,可选项,默认为10 normed: 是否将得到的直方图向量归一化。默认为0 facecolor: 直方图颜色 edgecolor: 直方图边框颜色 alpha: 透明度 histtype: 直方图类型,‘bar’, ‘barstacked’, ‘step’, ‘stepfilled’ 返回值 : n: 直方图向量,是否归一化由参数normed设定 bins: 返回各个bin的区间范围 patches: 返回每个bin里面包含的数据,是一个list

参考博文

机器学习数学|偏度与峰度及其python实现的更多相关文章

  1. 机器学习经典算法详解及Python实现--基于SMO的SVM分类器

    原文:http://blog.csdn.net/suipingsp/article/details/41645779 支持向量机基本上是最好的有监督学习算法,因其英文名为support vector  ...

  2. 机器学习经典算法具体解释及Python实现--线性回归(Linear Regression)算法

    (一)认识回归 回归是统计学中最有力的工具之中的一个. 机器学习监督学习算法分为分类算法和回归算法两种,事实上就是依据类别标签分布类型为离散型.连续性而定义的. 顾名思义.分类算法用于离散型分布预測, ...

  3. 机器学习数学|微积分梯度jensen不等式

    机器学习中的数学 觉得有用的话,欢迎一起讨论相互学习~Follow Me 原创文章,如需转载请保留出处 本博客为七月在线邹博老师机器学习数学课程学习笔记 索引 微积分,梯度和Jensen不等式 Tay ...

  4. 机器学习数学|Taylor展开式与拟牛顿

    机器学习中的数学 觉得有用的话,欢迎一起讨论相互学习~Follow Me 原创文章,如需转载请保留出处 本博客为七月在线邹博老师机器学习数学课程学习笔记 Taylor 展式与拟牛顿 索引 taylor ...

  5. 数据的偏度和峰度——df.skew()、df.kurt()

    我们一般会拿偏度和峰度来看数据的分布形态,而且一般会跟正态分布做比较,我们把正态分布的偏度和峰度都看做零.如果我们在实操中,算到偏度峰度不为0,即表明变量存在左偏右偏,或者是高顶平顶这么一说. 一.偏 ...

  6. 投入机器学习的怀抱?先学Python吧

    前两天写了篇文章,给想进程序员这个行当的同学们一点建议,没想到反响这么好,关注和阅读数都上了新高度,有点人生巅峰的感觉呀.今天趁热打铁,聊聊我最喜欢的编程语言——Python. 为什么要说Python ...

  7. 机器学习经典算法具体解释及Python实现--K近邻(KNN)算法

    (一)KNN依旧是一种监督学习算法 KNN(K Nearest Neighbors,K近邻 )算法是机器学习全部算法中理论最简单.最好理解的.KNN是一种基于实例的学习,通过计算新数据与训练数据特征值 ...

  8. Spark机器学习MLlib系列1(for python)--数据类型,向量,分布式矩阵,API

    Spark机器学习MLlib系列1(for python)--数据类型,向量,分布式矩阵,API 关键词:Local vector,Labeled point,Local matrix,Distrib ...

  9. 机器学习之决策树(ID3)算法与Python实现

    机器学习之决策树(ID3)算法与Python实现 机器学习中,决策树是一个预测模型:他代表的是对象属性与对象值之间的一种映射关系.树中每个节点表示某个对象,而每个分叉路径则代表的某个可能的属性值,而每 ...

随机推荐

  1. Spring REST 与 Zuul 代理

    http://www.baeldung.com/spring-rest-with-zuul-proxy 作者: Eugen Paraschiv 译者: http://oopsguy.com 1.概述 ...

  2. Spring详解(七)------事务管理

    PS:本篇博客源码下载链接:http://pan.baidu.com/s/1mi3NhX2 密码:3io2 1.事务介绍 事务(Transaction),一般是指要做的或所做的事情.在计算机术语中是指 ...

  3. ASP.NET没有魔法——目录

    ASP.NET没有魔法——开篇-用VS创建一个ASP.NET Web程序 ASP.NET没有魔法——为什么使用ASP.NET ASP.NET没有魔法——第一个ASP.NET应用<MyBlog&g ...

  4. linux下rename用法--批量重命名

    Linux的rename 命令有两个版本,一个是C语言版本的,一个是Perl语言版本的,早期的Linux发行版基本上使用的是C语言版本的,现在已经很难见到C语言版本的了, 由于历史原因,在Perl语言 ...

  5. flex的三个属性:

    (1)flex-grow:指的是相对于其他的子元素的扩展比率:默认值为0:数字 (2)flex-basis:指的是子元素的具体长度:可以为长度(rem,px,em)也可以为百分比: (3)flex-s ...

  6. windows mysql 操作实践

    1.通过navicat for mysql 进行数据库表的输入操作. 2.使用mySQL shell进行查询. 3. 显示数据表中的所有列的名称  show colums from user 4. 进 ...

  7. python re模块findall()详解

    今天写代码,在写到郑泽的时候遇到了一个坑,这个坑是re模块下的findall()函数. 下面我将结合代码,记录一下 import re string="abcdefg acbdgef abc ...

  8. Codeforces A. Trip For Meal

    A. Trip For Meal time limit per test 1 second memory limit per test 512 megabytes input standard inp ...

  9. WDA的配置

    WDA的配置 SAP的技术总是搞得很复杂,WDA的涉及到配置如下: 1. Internet Communication Manager 确认ICM中提供的HTTP/HTTPS运行正常. Tcode: ...

  10. css笔记-文本样式

    聊聊text-decoration.text-indent.text-transform.letter-spacing.word-spacing.vertical-align.下面是一些常用设置文本样 ...