机器学习数学|偏度与峰度及其python实现
机器学习数学笔记|偏度与峰度及其python实现
觉得有用的话,欢迎一起讨论相互学习~
本博客为七月在线邹博老师机器学习数学课程学习笔记
为七月在线打call!!
课程传送门
矩
- 对于随机变量X,X的K阶原点矩为
\[E(X^{k})
\] - X的K阶中心矩为
\[E([X-E(X)]^{k})
\] - 期望实际上是随机变量X的1阶原点矩,方差实际上是随机变量X的2阶中心矩
- 变异系数(Coefficient of Variation):标准差与均值(期望)的比值称为变异系数,记为C.V
- 偏度Skewness(三阶)
- 峰度Kurtosis(四阶)
偏度与峰度
利用matplotlib模拟偏度和峰度
计算期望和方差
import matplotlib.pyplot as plt
import math
import numpy as np
def calc(data):
n=len(data) # 10000个数
niu=0.0 # niu表示平均值,即期望.
niu2=0.0 # niu2表示平方的平均值
niu3=0.0 # niu3表示三次方的平均值
for a in data:
niu += a
niu2 += a**2
niu3 += a**3
niu /= n
niu2 /= n
niu3 /= n
sigma = math.sqrt(niu2 - niu*niu)
return [niu,sigma,niu3]
\]
\]
\]
- sigma表示标准差公式为
\[\sigma=\sqrt{E(x^{2})-E(x)^{2}}
\]\[用python语言表示即为sigma = math.sqrt(niu2 - niu*niu)
\] - 返回值为[期望,标准差,\(E(x^{3})\)]
- PS:我们知道期望E(X)的计算公式为
\[E(X)=\sum_{i=1}^{n}p(i)x(i)-----(1)
\]这里我们X一个事件p(i)表示事件出现的概率,x(i)表示事件所给予事件的权值.
- 我们直接利用
\[E(x)=\bar{X_{i}}----(2)
\]表示期望应当明确
- (2)公式中\(X_{i}是利用numpy中的伪随机数生成的,其均值用于表示期望\)
- 此时(1)公式中对事件赋予的权值默认为1,即公式的本来面目为
\[E(x)=\bar{(X_{i}*1)}
\]
计算偏度和峰度
def calc_stat(data):
[niu, sigma, niu3]=calc(data)
n=len(data)
niu4=0.0 # niu4计算峰度计算公式的分子
for a in data:
a -= niu
niu4 += a**4
niu4 /= n
skew =(niu3 -3*niu*sigma**2-niu**3)/(sigma**3) # 偏度计算公式
kurt=niu4/(sigma**4) # 峰度计算公式:下方为方差的平方即为标准差的四次方
return [niu, sigma,skew,kurt]
利用matplotlib模拟图像
if __name__ == "__main__":
data = list(np.random.randn(10000)) # 满足高斯分布的10000个数
data2 = list(2*np.random.randn(10000)) # 将满足好高斯分布的10000个数乘以两倍,方差变成四倍
data3 =[x for x in data if x>-0.5] # 取data中>-0.5的值
data4 = list(np.random.uniform(0,4,10000)) # 取0~4的均匀分布
[niu, sigma, skew, kurt] = calc_stat(data)
[niu_2, sigma2, skew2, kurt2] = calc_stat(data2)
[niu_3, sigma3, skew3, kurt3] = calc_stat(data3)
[niu_4, sigma4, skew4, kurt4] = calc_stat(data4)
print (niu, sigma, skew, kurt)
print (niu2, sigma2, skew2, kurt2)
print (niu3, sigma3, skew3, kurt3)
print (niu4, sigma4, skew4, kurt4)
info = r'$\mu=%.2f,\ \sigma=%.2f,\ skew=%.2f,\ kurt=%.2f$' %(niu,sigma, skew, kurt) # 标注
info2 = r'$\mu=%.2f,\ \sigma=%.2f,\ skew=%.2f,\ kurt=%.2f$' %(niu_2,sigma2, skew2, kurt2)
info3 = r'$\mu=%.2f,\ \sigma=%.2f,\ skew=%.2f,\ kurt=%.2f$' %(niu_3,sigma3, skew3, kurt3)
plt.text(1,0.38,info,bbox=dict(facecolor='red',alpha=0.25))
plt.text(1,0.35,info2,bbox=dict(facecolor='green',alpha=0.25))
plt.text(1,0.32,info3,bbox=dict(facecolor='blue',alpha=0.25))
plt.hist(data,100,normed=True,facecolor='r',alpha=0.9)
plt.hist(data2,100,normed=True,facecolor='g',alpha=0.8)
plt.hist(data4,100,normed=True,facecolor='b',alpha=0.7)
plt.grid(True)
plt.show()
- 图形表示的是利用numpy随机数生成函数生成的随机数的统计分布,利用matplotlib.pyplot.hist绘制的直方图.即是出现数字的分布统计,并且是归一化到0~1区间后的结果.
- 即横轴表示数字,纵轴表示在1000个随机数中横轴对应的数出现的百分比.若不使用归一化横轴表示数字(normed=False),纵轴表示出现的次数.
- 若不使用归一化--纵轴表示出现次数,
- 关于matplotlib.pyplot.hist函数
n, bins, patches = plt.hist(arr, bins=10, normed=0, facecolor='black', edgecolor='black',alpha=1,histtype='b')
hist的参数非常多,但常用的就这六个,只有第一个是必须的,后面四个可选
arr: 需要计算直方图的一维数组
bins: 直方图的柱数,可选项,默认为10
normed: 是否将得到的直方图向量归一化。默认为0
facecolor: 直方图颜色
edgecolor: 直方图边框颜色
alpha: 透明度
histtype: 直方图类型,‘bar’, ‘barstacked’, ‘step’, ‘stepfilled’
返回值 :
n: 直方图向量,是否归一化由参数normed设定
bins: 返回各个bin的区间范围
patches: 返回每个bin里面包含的数据,是一个list
机器学习数学|偏度与峰度及其python实现的更多相关文章
- 机器学习经典算法详解及Python实现--基于SMO的SVM分类器
原文:http://blog.csdn.net/suipingsp/article/details/41645779 支持向量机基本上是最好的有监督学习算法,因其英文名为support vector ...
- 机器学习经典算法具体解释及Python实现--线性回归(Linear Regression)算法
(一)认识回归 回归是统计学中最有力的工具之中的一个. 机器学习监督学习算法分为分类算法和回归算法两种,事实上就是依据类别标签分布类型为离散型.连续性而定义的. 顾名思义.分类算法用于离散型分布预測, ...
- 机器学习数学|微积分梯度jensen不等式
机器学习中的数学 觉得有用的话,欢迎一起讨论相互学习~Follow Me 原创文章,如需转载请保留出处 本博客为七月在线邹博老师机器学习数学课程学习笔记 索引 微积分,梯度和Jensen不等式 Tay ...
- 机器学习数学|Taylor展开式与拟牛顿
机器学习中的数学 觉得有用的话,欢迎一起讨论相互学习~Follow Me 原创文章,如需转载请保留出处 本博客为七月在线邹博老师机器学习数学课程学习笔记 Taylor 展式与拟牛顿 索引 taylor ...
- 数据的偏度和峰度——df.skew()、df.kurt()
我们一般会拿偏度和峰度来看数据的分布形态,而且一般会跟正态分布做比较,我们把正态分布的偏度和峰度都看做零.如果我们在实操中,算到偏度峰度不为0,即表明变量存在左偏右偏,或者是高顶平顶这么一说. 一.偏 ...
- 投入机器学习的怀抱?先学Python吧
前两天写了篇文章,给想进程序员这个行当的同学们一点建议,没想到反响这么好,关注和阅读数都上了新高度,有点人生巅峰的感觉呀.今天趁热打铁,聊聊我最喜欢的编程语言——Python. 为什么要说Python ...
- 机器学习经典算法具体解释及Python实现--K近邻(KNN)算法
(一)KNN依旧是一种监督学习算法 KNN(K Nearest Neighbors,K近邻 )算法是机器学习全部算法中理论最简单.最好理解的.KNN是一种基于实例的学习,通过计算新数据与训练数据特征值 ...
- Spark机器学习MLlib系列1(for python)--数据类型,向量,分布式矩阵,API
Spark机器学习MLlib系列1(for python)--数据类型,向量,分布式矩阵,API 关键词:Local vector,Labeled point,Local matrix,Distrib ...
- 机器学习之决策树(ID3)算法与Python实现
机器学习之决策树(ID3)算法与Python实现 机器学习中,决策树是一个预测模型:他代表的是对象属性与对象值之间的一种映射关系.树中每个节点表示某个对象,而每个分叉路径则代表的某个可能的属性值,而每 ...
随机推荐
- php追加编译GD库
一.准备工作. 安裝 GD 前需要安裝 jpegsrc.v7.tar.gz, libpng-1.6.17.tar.gz, zlib-1.2.8.tar.gz, freetype-2.5.5.tar.g ...
- 记住密码"功能的正确设计
Web上的用户登录功能应该是最基本的功能了,可是在我看过一些站点的用户登录功能后,我觉得很有必要写一篇文章教大家怎么来做用户登录功能.下面的文章告诉大家这个功能可能并没有你所想像的那么简单,这是一个关 ...
- git reflog -- 显示所有提交
格式: git commit [选项] <path> 选项 git commit -a 提交所有改动的文件(a -- all) git commit -m 提交说明( ...
- cmd获取python返回值
test.py代码如下: import urllib2 import sys try: f = urllib2.urlopen('http://www.baidu.com/',timeout = 10 ...
- Slf4j+Log4j日志框架入门
(一).日志系统介绍 slf4j,即简单日志门面(Simple Logging Facade for Java),不是具体的日志解决方案,它只服务于各种各样的日志系统.简答的讲就是slf4j是一系列的 ...
- 第四章 MySQL高级查询(二)
第四章 MySQL高级查询(二) 一.EXISTS子查询 在执行create 或drop语句之前,可以使用exists语句判断该数据库对像是否存在,返回值是true或false.除此之外,exists ...
- 用Python来实现列举某个文件夹内所有的文件列表
用Python来实现列举某个文件夹内所有的文件列表.吾八哥我动手写代码之前分析了下,遍历一个文件夹,肯定是需要用到os模块了,查阅模块帮助信息,可知os.listdir()方法可以列举某个文件夹内的所 ...
- 学习flex布局(弹性布局)
Flex是Flexible Box的缩写,意为弹性布局.是W3C早期提出的一个新的布局方案.可以便捷的实现页面布局,目前较高版本的主流浏览器都能兼容,兼容情况如下: Flex在移动端开发上已是主流,比 ...
- win10 UWP 隐式转换
implicit operator string <script type="text/javascript"> $(function () { $('pre.pret ...
- 【持续更新】.Net 开发中给自己埋下的坑!
1.文件“XXX”正在由另一进程使用,因此该进程无法访问此文件. 原因剖析:文件在主线程操作,在子线程中读写操作文件,刚开始没有意识到程序的问题所在,总是在FileStream中报错,google后常 ...