最近学习cordic算法,并利用FPGA实现,在整个学习过程中,对cordic算法原理、FPGA中流水线设计、Verilog标准有了更加深刻的理解。

首先,cordic算法的基本思想是通过一系列固定的、与运算基数有关的角度的不断偏,摆以逼近所需的旋转角度。

为了避免复杂的乘法运算,用一系列微旋转来处理,第i次旋转可表示为:
由式(7)可知:xn,yn分别为输入角H的余弦和正弦值。
在Verilog实现上,主要体会到了流水线设计的重要性。流水线设计的本质是将一个时钟周期完成的较大的组合逻辑(也可理解为一个逻辑需要多个时钟周期,使得数据不能再每个时钟都有输出)通过合理的切割分由多个时钟周期完成(每个时钟都有数据输出),以n=14为例,若不采用流水线设计,则旋转一个角度就需要14个时钟周期,这样输出正余弦波的最大频率变为Fclk/(2N*14),若采用流水线设计,则输出最大频率变为Fclk/2N,N为输出数据位宽,所以流水线设计具有非常重要的意义。
在reg型变量移位过程中,也对Verilog语言标准有了更新的了解,见:http://www.cnblogs.com/tshell/p/3236476.html
module Test(clk,rst,Phase_Word,Sin_Val,Cos_Val);

input clk,rst;
input[:] Phase_Word;
output reg [:] Sin_Val,Cos_Val; parameter Data_Width=; //输出数据宽度
parameter Itera_Num=;
parameter Kn = 'h4DBA; //Kn为旋转后缩放比例因子系数,Kn=0.607253*2^16
`define Rot_Angle0
`define Rot_Angle1
`define Rot_Angle2
`define Rot_Angle3
`define Rot_Angle4
`define Rot_Angle5
`define Rot_Angle6
`define Rot_Angle7
`define Rot_Angle8
`define Rot_Angle9
`define Rot_Angle10
`define Rot_Angle11
`define Rot_Angle12
`define Rot_Angle13 reg [Data_Width:] X[Itera_Num:]; //X轴坐标值,最终对应cos
reg [Data_Width:] Y[Itera_Num:]; //Y轴坐标值,最终对应sin
reg [Data_Width:] Z[Itera_Num:]; //角度累加器 reg[:] quadrant[Itera_Num:]; //象限,00:第一象限;01,10,11分别为二、三、四象限 /*****************************************************
功能:流水线实现cordic算法
说明:Itera_Num=0
*****************************************************/
always @(posedge clk or negedge rst)
if(!rst)
begin
X[] <= ;
Y[] <= ;
Z[] <= ;
end
else
begin
X[] <= {'b0,Kn};
Y[] <= ;
Z[] <= {'b0,Phase_Word[13:0]};//相位控制在(0-Pi/2),注意Phase_word需为reg signed类型。
end
/*****************************************************
功能:流水线实现cordic算法
说明:Itera_Num=1
*****************************************************/
always @(posedge clk or negedge rst)
if(!rst)
begin
X[] <= ;
Y[] <= ;
Z[] <= ;
end
else
begin
X[] <= X[] - Y[];
Y[] <= X[] + Y[];
Z[] <= Z[] - `Rot_Angle0;//第一次默认逆时针旋转45度
end
/*****************************************************
功能:流水线实现cordic算法
说明:Itera_Num=2
*****************************************************/
always @(posedge clk or negedge rst)
if(!rst)
begin
X[] <= ;
Y[] <= ;
Z[] <= ;
end
else
begin
if(Z[][])
begin
X[] <= X[] + {{{Y[][]}},Y[][:]};
Y[] <= Y[] - {{{X[][]}},X[][:]};
Z[] <= Z[] + `Rot_Angle1; //顺时针旋转
end
else
begin
X[] <= X[] - {{{Y[][]}},Y[][:]};
Y[] <= Y[] + {{{X[][]}},X[][:]};
Z[] <= Z[] - `Rot_Angle1; //逆时针旋转
end
end
/*****************************************************
功能:流水线实现cordic算法
说明:Itera_Num=3
*****************************************************/
always @(posedge clk or negedge rst)
if(!rst)
begin
X[] <= ;
Y[] <= ;
Z[] <= ;
end
else
begin
if(Z[][])
begin
X[] <= X[] + {{{Y[][]}},Y[][:]};
Y[] <= Y[] - {{{X[][]}},X[][:]};
Z[] <= Z[] + `Rot_Angle2; //顺时针旋转
end
else
begin
X[] <= X[] - {{{Y[][]}},Y[][:]};
Y[] <= Y[] + {{{X[][]}},X[][:]};
Z[] <= Z[] - `Rot_Angle2; //逆时针旋转
end
end
/*****************************************************
功能:流水线实现cordic算法
说明:Itera_Num=4
*****************************************************/
always @(posedge clk or negedge rst)
if(!rst)
begin
X[] <= ;
Y[] <= ;
Z[] <= ;
end
else
begin
if(Z[][])
begin
X[] <= X[] + {{{Y[][]}},Y[][:]};
Y[] <= Y[] - {{{X[][]}},X[][:]};
Z[] <= Z[] + `Rot_Angle3; //顺时针旋转
end
else
begin
X[] <= X[] - {{{Y[][]}},Y[][:]};
Y[] <= Y[] + {{{X[][]}},X[][:]};
Z[] <= Z[] - `Rot_Angle3; //逆时针旋转
end
end
/*****************************************************
功能:流水线实现cordic算法
说明:Itera_Num=5
*****************************************************/
always @(posedge clk or negedge rst)
if(!rst)
begin
X[] <= ;
Y[] <= ;
Z[] <= ;
end
else
begin
if(Z[][])
begin
X[] <= X[] + {{{Y[][]}},Y[][:]};
Y[] <= Y[] - {{{X[][]}},X[][:]};
Z[] <= Z[] + `Rot_Angle4; //顺时针旋转
end
else
begin
X[] <= X[] - {{{Y[][]}},Y[][:]};
Y[] <= Y[] + {{{X[][]}},X[][:]};
Z[] <= Z[] - `Rot_Angle4; //逆时针旋转
end
end
/*****************************************************
功能:流水线实现cordic算法
说明:Itera_Num=6
*****************************************************/
always @(posedge clk or negedge rst)
if(!rst)
begin
X[] <= ;
Y[] <= ;
Z[] <= ;
end
else
begin
if(Z[][])
begin
X[] <= X[] + {{{Y[][]}},Y[][:]};
Y[] <= Y[] - {{{X[][]}},X[][:]};
Z[] <= Z[] + `Rot_Angle5; //顺时针旋转
end
else
begin
X[] <= X[] - {{{Y[][]}},Y[][:]};
Y[] <= Y[] + {{{X[][]}},X[][:]};
Z[] <= Z[] - `Rot_Angle5; //逆时针旋转
end
end
/*****************************************************
功能:流水线实现cordic算法
说明:Itera_Num=7
*****************************************************/
always @(posedge clk or negedge rst)
if(!rst)
begin
X[] <= ;
Y[] <= ;
Z[] <= ;
end
else
begin
if(Z[][])
begin
X[] <= X[] + {{{Y[][]}},Y[][:]};
Y[] <= Y[] - {{{X[][]}},X[][:]};
Z[] <= Z[] + `Rot_Angle6; //顺时针旋转
end
else
begin
X[] <= X[] - {{{Y[][]}},Y[][:]};
Y[] <= Y[] + {{{X[][]}},X[][:]};
Z[] <= Z[] - `Rot_Angle6; //逆时针旋转
end
end
/*****************************************************
功能:流水线实现cordic算法
说明:Itera_Num=8
*****************************************************/
always @(posedge clk or negedge rst)
if(!rst)
begin
X[] <= ;
Y[] <= ;
Z[] <= ;
end
else
begin
if(Z[][])
begin
X[] <= X[] + {{{Y[][]}},Y[][:]};
Y[] <= Y[] - {{{X[][]}},X[][:]};
Z[] <= Z[] + `Rot_Angle7; //顺时针旋转
end
else
begin
X[] <= X[] - {{{Y[][]}},Y[][:]};
Y[] <= Y[] + {{{X[][]}},X[][:]};
Z[] <= Z[] - `Rot_Angle7; //逆时针旋转
end
end
/*****************************************************
功能:流水线实现cordic算法
说明:Itera_Num=9
*****************************************************/
always @(posedge clk or negedge rst)
if(!rst)
begin
X[] <= ;
Y[] <= ;
Z[] <= ;
end
else
begin
if(Z[][])
begin
X[] <= X[] + {{{Y[][]}},Y[][:]};
Y[] <= Y[] - {{{X[][]}},X[][:]};
Z[] <= Z[] + `Rot_Angle8; //顺时针旋转
end
else
begin
X[] <= X[] - {{{Y[][]}},Y[][:]};
Y[] <= Y[] + {{{X[][]}},X[][:]};
Z[] <= Z[] - `Rot_Angle8; //逆时针旋转
end
end
/*****************************************************
功能:流水线实现cordic算法
说明:Itera_Num=10
*****************************************************/
always @(posedge clk or negedge rst)
if(!rst)
begin
X[] <= ;
Y[] <= ;
Z[] <= ;
end
else
begin
if(Z[][])
begin
X[] <= X[] + {{{Y[][]}},Y[][:]};
Y[] <= Y[] - {{{X[][]}},X[][:]};
Z[] <= Z[] + `Rot_Angle9; //顺时针旋转
end
else
begin
X[] <= X[] - {{{Y[][]}},Y[][:]};
Y[] <= Y[] + {{{X[][]}},X[][:]};
Z[] <= Z[] - `Rot_Angle9; //逆时针旋转
end
end
/*****************************************************
功能:流水线实现cordic算法
说明:Itera_Num=11
*****************************************************/
always @(posedge clk or negedge rst)
if(!rst)
begin
X[] <= ;
Y[] <= ;
Z[] <= ;
end
else
begin
if(Z[][])
begin
X[] <= X[] + {{{Y[][]}},Y[][:]};
Y[] <= Y[] - {{{X[][]}},X[][:]};
Z[] <= Z[] + `Rot_Angle10; //顺时针旋转
end
else
begin
X[] <= X[] - {{{Y[][]}},Y[][:]};
Y[] <= Y[] + {{{X[][]}},X[][:]};
Z[] <= Z[] - `Rot_Angle10; //逆时针旋转
end
end
/*****************************************************
功能:流水线实现cordic算法
说明:Itera_Num=12
*****************************************************/
always @(posedge clk or negedge rst)
if(!rst)
begin
X[] <= ;
Y[] <= ;
Z[] <= ;
end
else
begin
if(Z[][])
begin
X[] <= X[] + {{{Y[][]}},Y[][:]};
Y[] <= Y[] - {{{X[][]}},X[][:]};
Z[] <= Z[] + `Rot_Angle11; //顺时针旋转
end
else
begin
X[] <= X[] - {{{Y[][]}},Y[][:]};
Y[] <= Y[] + {{{X[][]}},X[][:]};
Z[] <= Z[] - `Rot_Angle11; //逆时针旋转
end
end
/*****************************************************
功能:流水线实现cordic算法
说明:Itera_Num=13
*****************************************************/
always @(posedge clk or negedge rst)
if(!rst)
begin
X[] <= ;
Y[] <= ;
Z[] <= ;
end
else
begin
if(Z[][])
begin
X[] <= X[] + {{{Y[][]}},Y[][:]};
Y[] <= Y[] - {{{X[][]}},X[][:]};
Z[] <= Z[] + `Rot_Angle12; //顺时针旋转
end
else
begin
X[] <= X[] - {{{Y[][]}},Y[][:]};
Y[] <= Y[] + {{{X[][]}},X[][:]};
Z[] <= Z[] - `Rot_Angle12; //逆时针旋转
end
end
/*****************************************************
功能:流水线实现cordic算法
说明:Itera_Num=14
*****************************************************/
always @(posedge clk or negedge rst)
if(!rst)
begin
X[] <= ;
Y[] <= ;
Z[] <= ;
end
else
begin
if(Z[][])
begin
X[] <= X[] + {{{Y[][]}},Y[][:]};
Y[] <= Y[] - {{{X[][]}},X[][:]};
Z[] <= Z[] + `Rot_Angle13; //顺时针旋转
end
else
begin
X[] <= X[] - {{{Y[][]}},Y[][:]};
Y[] <= Y[] + {{{X[][]}},X[][:]};
Z[] <= Z[] - `Rot_Angle13; //逆时针旋转
end
end
/*****************************************************
功能:获取象限信息
*****************************************************/
always @ (posedge clk or negedge rst)
begin
if(!rst)
begin
quadrant[] <= ;
quadrant[] <= ;
quadrant[] <= ;
quadrant[] <= ;
quadrant[] <= ;
quadrant[] <= ;
quadrant[] <= ;
quadrant[] <= ;
quadrant[] <= ;
quadrant[] <= ;
quadrant[] <= ;
quadrant[] <= ;
quadrant[] <= ;
quadrant[] <= ;
quadrant[] <= ;
end
else
begin
quadrant[] <= Phase_Word[:];
quadrant[] <= quadrant[];
quadrant[] <= quadrant[];
quadrant[] <= quadrant[];
quadrant[] <= quadrant[];
quadrant[] <= quadrant[];
quadrant[] <= quadrant[];
quadrant[] <= quadrant[];
quadrant[] <= quadrant[];
quadrant[] <= quadrant[];
quadrant[] <= quadrant[];
quadrant[] <= quadrant[];
quadrant[] <= quadrant[];
quadrant[] <= quadrant[];
quadrant[] <= quadrant[];
end
end
/*****************************************************
功能:根据象限确定输出值
说明:当角度A=theta+pi/2在(pi/2~pi)时,
cos(theta+pi/2)=-sin(theta).其中,theta为第一象限角
二进制中,负数等于整数取反再加一
*****************************************************/
always @ (posedge clk or negedge rst)
begin
if(!rst)
begin
Sin_Val <= ;
Cos_Val <= ;
end
else
begin
case(quadrant[])
'b00:begin
Cos_Val <= X[];
Sin_Val <= Y[];
end
'b01:begin
Cos_Val <= ~Y[] + 'b1;
Sin_Val <= X[];
end
'b10:begin
Cos_Val <= ~X[] + 'b1;
Sin_Val <= ~Y[] + 'b1;
end
'b11:begin
Cos_Val <= Y[];
Sin_Val <= ~X[] + 'b1;
end
endcase
end
end endmodule

整个源码设计主要参考了aikimi7的设计,连接:http://www.cnblogs.com/aikimi7/p/3929592.html

 

学习cordic算法所得(流水线结构、Verilog标准)的更多相关文章

  1. Cordic算法——verilog实现

    上两篇博文Cordic算法--圆周系统之旋转模式.Cordic算法--圆周系统之向量模式做了理论分析和实现,但是所用到的变量依然是浮点型,而cordic真正的用处是基于FPGA等只能处理定点的平台.只 ...

  2. 使用CORDIC算法求解角度正余弦及Verilog实现

    本文是用于记录在了解和学习CORDIC算法期间的收获,以供日后自己及他人参考:并且附上了使用Verilog实现CORDIC算法求解角度的正弦和余弦的代码.简单的testbench测试代码.以及在Mod ...

  3. 基于FPGA的Cordic算法实现

    CORDIC(Coordinate Rotation Digital Computer)算法即坐标旋转数字计算方法,是J.D.Volder1于1959年首次提出,主要用于三角函数.双曲线.指数.对数的 ...

  4. cordic算法的verilog实现及modelsim仿真

    1. 算法介绍 CORDIC(Coordinate Rotation Digital Computer)算法即坐标旋转数字计算方法,是J.D.Volder1于1959年首次提出,主要用于三角函数.双曲 ...

  5. 基于FPGA的cordic算法的verilog初步实现

    最近在看cordic算法,由于还不会使用matlab,真是痛苦,一系列的笔算才大概明白了这个算法是怎么回事.于是尝试用verilog来实现.用verilog实现之前先参考软件的程序,于是先看了此博文h ...

  6. 定点CORDIC算法求所有三角函数及向量模的原理分析、硬件实现(FPGA)

    一.CORDIC算法 CORDIC(Coordinate Rotation DIgital Computer)是一种通过迭代对多种数学函数求值的方法,它可以对三角函数.双曲函数和平面旋转问题进行求解. ...

  7. 三角函数计算,Cordic 算法入门

    [-] 三角函数计算Cordic 算法入门 从二分查找法说起 减少乘法运算 消除乘法运算 三角函数计算,Cordic 算法入门 三角函数的计算是个复杂的主题,有计算机之前,人们通常通过查找三角函数表来 ...

  8. (转)三角函数计算,Cordic 算法入门

    由于最近要使用atan2函数,但是时间上消耗比较多,因而网上搜了一下简化的算法. 原帖地址:http://blog.csdn.net/liyuanbhu/article/details/8458769 ...

  9. DeepLearning.ai学习笔记(三)结构化机器学习项目--week2机器学习策略(2)

    一.进行误差分析 很多时候我们发现训练出来的模型有误差后,就会一股脑的想着法子去减少误差.想法固然好,但是有点headlong~ 这节视频中吴大大介绍了一个比较科学的方法,具体的看下面的例子 还是以猫 ...

随机推荐

  1. Python格式化字符串--format

    format格式化字符串方法相较于老版%格式方法的优点: 1.不需要理会数据类型的问题,在%方法中'%s'只能替代字符串类型. 2.单个参数可以多次输出,参数顺序可以不相同. 3.填充方式十分灵活,对 ...

  2. vmware虚拟机安装CentOS-6.5教程

    linux是企业最常用的服务器系统之一,CentOS是免费的,所以用的企业也挺多,今天给大家分享怎么在自己电脑的虚拟机中安装CentOS-6.5,以便用来玩耍,没事的时候可以学学linux的一些知识. ...

  3. canvas图表详解系列(3):动态饼状图(原生Js仿echarts饼状图)

    本章建议学习时间4小时 学习方式:详细阅读,并手动实现相关代码(如果没有canvas基础,需要先学习前面的canvas基础笔记) 学习目标:此教程将教会大家如何使用canvas绘制各种图表,详细分解步 ...

  4. Thinking in React Implemented by Reagent

    前言  本文是学习Thinking in React这一章后的记录,并且用Reagent实现其中的示例. 概要 构造恰当的数据结构 从静态非交互版本开始 追加交互代码 一.构造恰当的数据结构 Sinc ...

  5. HTML5-前端开发很火且工资很高?

    前言 晚上逛论坛看到一篇对从事HTML5前端开发的文章写的非常不错,和目前的市场形势差不多,然后我在其基础上给大家进行加工总结一下分享给大家.今天我们谈论的话题是<<为什么从事HTML5前 ...

  6. Cosmos OpenSSD--greedy_ftl1.2.0(一)

    从主函数跳到ReqHandler,在ReqHandler内先初始化SSD--InitNandReset,然后建立映射表InitFtlMapTable void InitNandReset() { // ...

  7. Java8之旅(七) - 函数式备忘录模式优化递归

    前言 在上一篇开始Java8之旅(六) -- 使用lambda实现Java的尾递归中,我们利用了函数的懒加载机制实现了栈帧的复用,成功的实现了Java版本的尾递归,然而尾递归的使用有一个重要的条件就是 ...

  8. python 模块的概念介绍

    模块 模块:本质就是一个.py文件分为三部分:内置模块.第三方模块,自定义模块 模块: 顶层文件 python模块python模块可以将代码量较大的程序分割成多个有组织的.彼此独立但又能互相交互的代码 ...

  9. ABAP开发实用快捷键

    在程序中注释代码往往受输入法影响,看了别人的一篇博客,结合自己的测试发现用如下方法可以直接注释源代码不受输入法影响 添加注释:ctrl + space + < 去掉注释:ctrl + space ...

  10. 关于EsayUI中datagrid重复提交后台查询数据的问题

    直接上代码: <table id="XXXX" style="width:100%;height:100%;" class="easyui-da ...