【NOIP2014提高组】解方程
https://www.luogu.org/problem/show?pid=2312
对于30%的数据,n<=2,暴力带入试解。
对于50%的数据,ai很大,结合高精乘法和霍纳算法暴力代入试解。
高精乘法,时间复杂度是很恐怖的而且我不懂写。
注意到虽然ai很大,但是m还是在int范围内的。
继续考虑暴力试解。
考虑到0 mod k=0 (k∈N*),那么当f(x)=0时,f(x) mod k=0。
但是反过来f(x) mod k=0不一定使f(x)=0成立。当k|f(x)时,f(x) mod k=0也能成立。
为了尽可能避免这种情况,和hash一样,k取几个素数,只有膜这几个素数的时候f(x) mod k=0均成立,才判断f(x)=0成立。
在本题中,故
发现ai可以被膜掉,成功回避高精运算。
实际实现的时候可以写一个和快速读入一样的东西,一边读一边膜。也可以先以字符串的形式读进来,再计算成膜k的值。
然后发现xi也被膜掉,也就是说f(x) mod k=f(x+k) mod k。因此试解的时候只需要试[1,k)范围内的解。当然,k要取远比m小的数,这个优化才有意义。
模几个素数呢?模多大的素数呢?这是个非常看脸的问题。少了会WA,多了会TLE。
经过多次测试,模5个10000左右的素数是坠吼的。可是NOIP哪有机会多次测试
#include <algorithm>
#include <iostream>
#include <vector>
#include <cctype>
#include <cstring>
#define maxn 105
#define maxm 1000005
#define NUM_OF_PRIME 5
typedef long long llint;
using namespace std;
const llint prime[NUM_OF_PRIME] = {9859ll, 9631ll, 9059ll, 8783ll, 8291ll};
llint a[maxn][NUM_OF_PRIME]; //a[i][j] => i次项系数 % prime[j]
int n, m;
void geta(int i)
{
char c;
bool flag = false;
while (!isdigit(c = getchar()))
{
if (c == '-')
flag = true;
}
do
{
for (int k = ; k < NUM_OF_PRIME; k++)
a[i][k] = (a[i][k] * % prime[k] + c - '') % prime[k];
} while (isdigit(c = getchar()));
if (flag)
{
for (int k = ; k < NUM_OF_PRIME; k++)
a[i][k] = -a[i][k];
}
}
llint get_val(llint x, int k) // return f(x) mod k
{
llint val = ;
for (int i = n; i >= ; i--)
val = (val * x % prime[k] + a[i][k]) % prime[k];
return val;
}
bool isroot[maxm];
int main()
{
cin >> n >> m;
for (int i = ; i <= n; i++)
geta(i);
memset(isroot, true, m + );
for (int k = ; k < NUM_OF_PRIME; k++)
{
for (int i = ; i < min(prime[k], (llint)m + ); i++)
{
bool equalzero = get_val(i, k) == ;
for (int j = i; j <= m; j += prime[k])
isroot[j] &= equalzero;
}
}
vector<int> ans;
for (int i = ; i <= m; i++)
if (isroot[i])
ans.push_back(i);
cout << ans.size() << endl;
for (int i = ; i < ans.size(); i++)
cout << ans[i] << endl;
return ;
}
【NOIP2014提高组】解方程的更多相关文章
- [NOIp2014提高组]解方程
思路: 系数的范围有$10^{10000}$,但是用高精度做显然不现实,因此可以考虑一个类似于“哈希”的做法, 对方程两边同时取模,如果取的模数足够多,正确率就很高了. 中间对多项式的计算可以使用$O ...
- NOIP2014提高组解方程
其实没有太难 但是不知道的话想不到 考场上大概有50分吧 #include <iostream> #include <stdio.h> #include <queue&g ...
- [NOIP2014] 提高组 洛谷P2038 无线网络发射器选址
题目描述 随着智能手机的日益普及,人们对无线网的需求日益增大.某城市决定对城市内的公共场所覆盖无线网. 假设该城市的布局为由严格平行的129 条东西向街道和129 条南北向街道所形成的网格状,并且相邻 ...
- 刷题总结——飞扬的小鸟(NOIP2014提高组)
题目: 题目背景 NOIP2014 提高组 Day1 试题. 题目描述 Flappy Bird 是一款风靡一时的休闲手机游戏.玩家需要不断控制点击手机屏幕的频率来调节小鸟的飞行高度,让小鸟顺利通过画面 ...
- 垃圾陷阱 && [NOIP2014 提高组] 飞扬的小鸟
#include<bits/stdc++.h> using namespace std; int d,n,dp[1010]; struct node{int t,f,h;} a[1010] ...
- NOIP2014提高组 酱油记
NOIP考到哪里我就写到哪里好了. 2014/10/12 初赛 下午两点半开始考,我两点就到了.然后看到了QYL,NYZ,CZR等大神,先Orz了再说. 考试开始前,发现考场竟然没几个我认识的,不是按 ...
- noip2014 提高组
T1 生活大爆炸版 石头剪刀布 题目传送门 就是道模拟题咯 #include<algorithm> #include<cstdio> #include<cstring&g ...
- NOIP2014提高组 题解报告
D1 T1 无线网路发射器选址 题目大意:找一个矩形,使其覆盖的目标点最大. 题目过水,直接暴力搞过去,代码就不贴了. 但我TM居然有个地方SB了,调了半天才发现输入有问题: scanf(" ...
- 【学术篇】luogu1351 [NOIP2014提高组] 联合权值
一道提高组的题..... 传送门:题目在这里.... 现在都懒得更自己的blog了,怕是太颓废了_ (:з」∠) _ 好久没做题了,手都生了.(好吧其实是做题方面手太生了) 这题我都不想讲了,把代码一 ...
- [NOIP2014] 提高组 洛谷P2312 解方程
题目描述 已知多项式方程: a0+a1x+a2x^2+..+anx^n=0 求这个方程在[1, m ] 内的整数解(n 和m 均为正整数) 输入输出格式 输入格式: 输入文件名为equation .i ...
随机推荐
- sqoop1.9.7安装和使用
安装1.下载sqoop1.9.7.地址: http://www.apache.org/dyn/closer.lua/sqoop/1.99.72.解压sqoop ,并配置环境变量 ~/.bash_pro ...
- Linux中包管理与定时任务
第1章 软件查询 1.1 查询软件是否安装 rpm -qa |grep cron 查询是否安装了这个软件. [root@znix ~]# rpm -qa |grep cron crontabs-1.1 ...
- linux dig 命令
dig 命令主要用来从 DNS 域名服务器查询主机地址信息. 查询单个域名的 DNS 信息 dig 命令最典型的用法就是查询单个主机的信息. $ dig baidu.com dig 命令默认的输出信息 ...
- 关于ThinkPHP中的时间自动填充
<?php class NewsModel extends Model{ protected $_auto = array( array('time_at','mydate','1','call ...
- 一起写框架-控制反转(Ioc)概述(二)
控制反转概述 控制反转(Inversion of Control,英文缩写为IoC),就是将代码的调用的控制权,由调用方转移给被调用方. 如图:修改代码A类的代码,才能将B类的对象换成C类.代码的控制 ...
- 用户需求与NABCD分析
用户需求与NABCD分析 目录 项目简介 用户需求分析 调研途径 问卷情况说明 问卷反馈与分析 NABCD分析 Need 需求 Approach 途径 Benefit 好处 Competitors 竞 ...
- 小程序 wx.getRecorderManager 录音 to 语音识别
微信扫小程序码看调用效果(自然语言理解小助手) 欢迎转载,请保留原文链接:http://www.happycxz.com/m/?p=125 这次主要是把我的api更新了一下,支持微信小程序新的录音接口 ...
- elasticsearch 基础语句
1. doucument id 的两种生成方式 自动生成document id自动生成的id,长度为20个字符,URL安全,base64编码,GUID,分布式系统并行生成时不可能会发生冲突 POST ...
- FLP不可能性(FLP impossibility)
FLP不可能性(FLP impossibility) FLP impossibility是一个定理,它证明了在分布式情景下,无论任何算法,即使是只有一个进程挂掉,对于其他非失败进程,都存在着无法达成一 ...
- IpHelper根据客户端IP进行网站分流
public class IpHelper { // 核心方法:IP搜索 /// <summary> /// 查找IP所属地区,确保web.c ...