python编写知乎爬虫实践
爬虫的基本流程
网络爬虫的基本工作流程如下:
- 首先选取一部分精心挑选的种子URL
- 将种子URL加入任务队列
- 从待抓取URL队列中取出待抓取的URL,解析DNS,并且得到主机的ip,并将URL对应的网页下载下来,存储进已下载网页库中。此外,将这些URL放进已抓取URL队列。
- 分析已抓取URL队列中的URL,分析其中的其他URL,并且将URL放入待抓取URL队列,从而进入下一个循环。
- 解析下载下来的网页,将需要的数据解析出来。
- 数据持久话,保存至数据库中。
爬虫的抓取策略
在爬虫系统中,待抓取URL队列是很重要的一部分。待抓取URL队列中的URL以什么样的顺序排列也是一个很重要的问题,因为这涉及到先抓取那个页面,后抓取哪个页面。而决定这些URL排列顺序的方法,叫做抓取策略。下面重点介绍几种常见的抓取策略:
- 深度优先策略(DFS)
深度优先策略是指爬虫从某个URL开始,一个链接一个链接的爬取下去,直到处理完了某个链接所在的所有线路,才切换到其它的线路。
此时抓取顺序为:A -> B -> C -> D -> E -> F -> G -> H -> I -> J - 广度优先策略(BFS)
宽度优先遍历策略的基本思路是,将新下载网页中发现的链接直接插入待抓取URL队列的末尾。也就是指网络爬虫会先抓取起始网页中链接的所有网页,然后再选择其中的一个链接网页,继续抓取在此网页中链接的所有网页。
此时抓取顺序为:A -> B -> E -> G -> H -> I -> C -> F -> J -> D
了解了爬虫的工作流程和爬取策略后,就可以动手实现一个爬虫了!那么在python里怎么实现呢?
技术栈
- requests 人性化的请求发送
- Bloom Filter 布隆过滤器,用于判重
- XPath 解析HTML内容
- murmurhash
- Anti crawler strategy 反爬虫策略
- MySQL 用户数据存储
基本实现
下面是一个伪代码
import Queue
initial_page = "https://www.zhihu.com/people/gaoming623"
url_queue = Queue.Queue()
seen = set()
seen.insert(initial_page)
url_queue.put(initial_page)
while(True): #一直进行
if url_queue.size()>0:
current_url = url_queue.get() #拿出队例中第一个的url
store(current_url) #把这个url代表的网页存储好
for next_url in extract_urls(current_url): #提取把这个url里链向的url
if next_url not in seen:
seen.put(next_url)
url_queue.put(next_url)
else:
break
如果你直接加工一下上面的代码直接运行的话,你需要很长的时间才能爬下整个知乎用户的信息,毕竟知乎有6000万月活跃用户。更别说Google这样的搜索引擎需要爬下全网的内容了。那么问题出现在哪里?
布隆过滤器
需要爬的网页实在太多太多了,而上面的代码太慢太慢了。设想全网有N个网站,那么分析一下判重的复杂度就是N*log(N),因为所有网页要遍历一次,而每次判重用set的话需要log(N)的复杂度。OK,我知道python的set实现是hash——不过这样还是太慢了,至少内存使用效率不高。
通常的判重做法是怎样呢?Bloom Filter. 简单讲它仍然是一种hash的方法,但是它的特点是,它可以使用固定的内存(不随url的数量而增长)以O(1)的效率判定url是否已经在set中。可惜天下没有白吃的午餐,它的唯一问题在于,如果这个url不在set中,BF可以100%确定这个url没有看过。但是如果这个url在set中,它会告诉你:这个url应该已经出现过,不过我有2%的不确定性。注意这里的不确定性在你分配的内存足够大的时候,可以变得很小很少。
# bloom_filter.py
BIT_SIZE = 5000000
class BloomFilter:
def __init__(self):
# Initialize bloom filter, set size and all bits to 0
bit_array = bitarray(BIT_SIZE)
bit_array.setall(0)
self.bit_array = bit_array
def add(self, url):
# Add a url, and set points in bitarray to 1 (Points count is equal to hash funcs count.)
# Here use 7 hash functions.
point_list = self.get_postions(url)
for b in point_list:
self.bit_array[b] = 1
def contains(self, url):
# Check if a url is in a collection
point_list = self.get_postions(url)
result = True
for b in point_list:
result = result and self.bit_array[b]
return result
def get_postions(self, url):
# Get points positions in bit vector.
point1 = mmh3.hash(url, 41) % BIT_SIZE
point2 = mmh3.hash(url, 42) % BIT_SIZE
point3 = mmh3.hash(url, 43) % BIT_SIZE
point4 = mmh3.hash(url, 44) % BIT_SIZE
point5 = mmh3.hash(url, 45) % BIT_SIZE
point6 = mmh3.hash(url, 46) % BIT_SIZE
point7 = mmh3.hash(url, 47) % BIT_SIZE
return [point1, point2, point3, point4, point5, point6, point7]
BF详细的原理参考我之前写的文章:布隆过滤器(Bloom Filter)的原理和实现
建表
用户有价值的信息包括用户名、简介、行业、院校、专业及在平台上活动的数据比如回答数、文章数、提问数、粉丝数等等。
用户信息存储的表结构如下:
CREATE DATABASE `zhihu_user` /*!40100 DEFAULT CHARACTER SET utf8 */;
-- User base information table
CREATE TABLE `t_user` (
`uid` bigint(20) unsigned NOT NULL AUTO_INCREMENT,
`username` varchar(50) NOT NULL COMMENT '用户名',
`brief_info` varchar(400) COMMENT '个人简介',
`industry` varchar(50) COMMENT '所处行业',
`education` varchar(50) COMMENT '毕业院校',
`major` varchar(50) COMMENT '主修专业',
`answer_count` int(10) unsigned DEFAULT 0 COMMENT '回答数',
`article_count` int(10) unsigned DEFAULT 0 COMMENT '文章数',
`ask_question_count` int(10) unsigned DEFAULT 0 COMMENT '提问数',
`collection_count` int(10) unsigned DEFAULT 0 COMMENT '收藏数',
`follower_count` int(10) unsigned DEFAULT 0 COMMENT '被关注数',
`followed_count` int(10) unsigned DEFAULT 0 COMMENT '关注数',
`follow_live_count` int(10) unsigned DEFAULT 0 COMMENT '关注直播数',
`follow_topic_count` int(10) unsigned DEFAULT 0 COMMENT '关注话题数',
`follow_column_count` int(10) unsigned DEFAULT 0 COMMENT '关注专栏数',
`follow_question_count` int(10) unsigned DEFAULT 0 COMMENT '关注问题数',
`follow_collection_count` int(10) unsigned DEFAULT 0 COMMENT '关注收藏夹数',
`gmt_create` datetime NOT NULL COMMENT '创建时间',
`gmt_modify` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '最后一次编辑',
PRIMARY KEY (`uid`)
) ENGINE=MyISAM AUTO_INCREMENT=1 DEFAULT CHARSET=utf8 COMMENT='用户基本信息表';
网页下载后通过XPath进行解析,提取用户各个维度的数据,最后保存到数据库中。
反爬虫策略应对-Headers
一般网站会从几个维度来反爬虫:用户请求的Headers,用户行为,网站和数据加载的方式。从用户请求的Headers反爬虫是最常见的策略,很多网站都会对Headers的User-Agent进行检测,还有一部分网站会对Referer进行检测(一些资源网站的防盗链就是检测Referer)。
如果遇到了这类反爬虫机制,可以直接在爬虫中添加Headers,将浏览器的User-Agent复制到爬虫的Headers中;或者将Referer值修改为目标网站域名。对于检测Headers的反爬虫,在爬虫中修改或者添加Headers就能很好的绕过。
cookies = {
"d_c0": "AECA7v-aPwqPTiIbemmIQ8abhJy7bdD2VgE=|1468847182",
"login": "NzM5ZDc2M2JkYzYwNDZlOGJlYWQ1YmI4OTg5NDhmMTY=|1480901173|9c296f424b32f241d1471203244eaf30729420f0",
"n_c": "1",
"q_c1": "395b12e529e541cbb400e9718395e346|1479808003000|1468847182000",
"l_cap_id": "NzI0MTQwZGY2NjQyNDQ1NThmYTY0MjJhYmU2NmExMGY=|1480901160|2e7a7faee3b3e8d0afb550e8e7b38d86c15a31bc",
"d_c0": "AECA7v-aPwqPTiIbemmIQ8abhJy7bdD2VgE=|1468847182",
"cap_id": "N2U1NmQwODQ1NjFiNGI2Yzg2YTE2NzJkOTU5N2E0NjI=|1480901160|fd59e2ed79faacc2be1010687d27dd559ec1552a"
}
headers = {
"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/54.0.2840.98 Safari/537.3",
"Referer": "https://www.zhihu.com/"
}
r = requests.get(url, cookies = cookies, headers = headers)
反爬虫策略应对-代理IP池
还有一部分网站是通过检测用户行为,例如同一IP短时间内多次访问同一页面,或者同一账户短时间内多次进行相同操作。
大多数网站都是前一种情况,对于这种情况,使用IP代理就可以解决。这样的代理ip爬虫经常会用到,最好自己准备一个。有了大量代理ip后可以每请求几次更换一个ip,这在requests或者urllib2中很容易做到,这样就能很容易的绕过第一种反爬虫。目前知乎已经对爬虫做了限制,如果是单个IP的话,一段时间系统便会提示异常流量,无法继续爬取了。因此代理IP池非常关键。网上有个免费的代理IP API: http://api.xicidaili.com/free2016.txt
import requests
import random
class Proxy:
def __init__(self):
self.cache_ip_list = []
# Get random ip from free proxy api url.
def get_random_ip(self):
if not len(self.cache_ip_list):
api_url = 'http://api.xicidaili.com/free2016.txt'
try:
r = requests.get(api_url)
ip_list = r.text.split('\r\n')
self.cache_ip_list = ip_list
except Exception as e:
# Return null list when caught exception.
# In this case, crawler will not use proxy ip.
print e
return {}
proxy_ip = random.choice(self.cache_ip_list)
proxies = {'http': 'http://' + proxy_ip}
return proxies
后续
- 使用日志模块记录爬取日志和错误日志
- 分布式任务队列和分布式爬虫
爬虫源代码:zhihu-crawler 下载之后通过pip安装相关三方包后,运行$ python crawler.py即可(喜欢的帮忙点个star哈,同时也方便看到后续功能的更新)
运行截图:
python编写知乎爬虫实践的更多相关文章
- Python 利用Python编写简单网络爬虫实例3
利用Python编写简单网络爬虫实例3 by:授客 QQ:1033553122 实验环境 python版本:3.3.5(2.7下报错 实验目的 获取目标网站“http://bbs.51testing. ...
- Python 利用Python编写简单网络爬虫实例2
利用Python编写简单网络爬虫实例2 by:授客 QQ:1033553122 实验环境 python版本:3.3.5(2.7下报错 实验目的 获取目标网站“http://www.51testing. ...
- 使用Python编写简单网络爬虫抓取视频下载资源
我第一次接触爬虫这东西是在今年的5月份,当时写了一个博客搜索引擎.所用到的爬虫也挺智能的,起码比电影来了这个站用到的爬虫水平高多了! 回到用Python写爬虫的话题. Python一直是我主要使用的脚 ...
- 【Python】:简单爬虫作业
使用Python编写的图片爬虫作业: #coding=utf-8 import urllib import re def getPage(url): #urllib.urlopen(url[, dat ...
- python编写的自动获取代理IP列表的爬虫-chinaboywg-ChinaUnix博客
python编写的自动获取代理IP列表的爬虫-chinaboywg-ChinaUnix博客 undefined Python多线程抓取代理服务器 | Linux运维笔记 undefined java如 ...
- Python编程从入门到实践笔记——函数
Python编程从入门到实践笔记——函数 #coding=gbk #Python编程从入门到实践笔记——函数 #8.1定义函数 def 函数名(形参): # [缩进]注释+函数体 #1.向函数传递信息 ...
- 使用Python + Selenium打造浏览器爬虫
Selenium 是一款强大的基于浏览器的开源自动化测试工具,最初由 Jason Huggins 于 2004 年在 ThoughtWorks 发起,它提供了一套简单易用的 API,模拟浏览器的各种操 ...
- 爬虫实践——数据存储到Excel中
在进行爬虫实践时,我已经爬取到了我需要的信息,那么最后一个问题就是如何把我所爬到的数据存储到Excel中去,这是我没有学习过的知识. 如何解决这个问题,我选择先百度查找如何解决这个问题. 百度查到的方 ...
- Hadoop:使用原生python编写MapReduce
功能实现 功能:统计文本文件中所有单词出现的频率功能. 下面是要统计的文本文件 [/root/hadooptest/input.txt] foo foo quux labs foo bar quux ...
随机推荐
- 为linux安装xen-tools提示/dev/xvdd does not exist
看样子百度还是不如google啊.百度上找到的信息完全无用.google上却给我找到了... 1:当/dev/xvdd does not exist错误出现时,可以尝试下 mount /dev/cdr ...
- 二、AspNet Core添加EF的基本方法(简略版):
_/\__ ---==/ \\ |. \|\ | ) \\\ \_/ | //|\\ / \\\/\\ 1.在Project.json的dependencies选项中添加以下引用: "Mic ...
- [工具技巧] SecureCRT使用技巧 V1.0
本文档适用对象为需要使用secureCRT做系统或网络等调试的工程师,其必须有用过该款软件,基础功能会使用.对于那些需要修改大量设备的配置时像远程升级等等,更应该学习本文档. 1 Secu ...
- 转-Tomcat 8 安装和配置、优化
https://github.com/judasn/Linux-Tutorial/blob/master/Tomcat-Install-And-Settings.md Tomcat 8 安装 Tomc ...
- ST-1之乱码bug
我印象最深刻的一个错误就是乱码.上学期末做web期末作业时候,我就遇到了好多乱码问题.乱码问题并不是程序本身的逻辑错误,但是却让程序的可用性非常的差.只有输入英文时才能判断结果的正确与否.而且编译器又 ...
- 跨交换机相同vlan内的通信(trunk模式)
当一个公司的小型局域网内部,处于不同楼层的主机处在同一个虚拟局域网内,连接到不同的交换机上,这时候就需要相同虚拟局域网内部的主机进行跨交换机进行通信. 通过设置交换机之间相连接的端口开启trunk模式 ...
- 2.let 和 const
Babel 是一个广泛使用的 ES6 转码器,可以将 ES6 代码转为 ES5 代码,从而在现有环境执行. Babel 提供一个REPL在线编译器,可以在线将 ES6 代码转为 ES5 代码.转换后的 ...
- XSHELL工具上传文件到Linux以及下载文件到本地(Windows)
Xshell很好用,然后有时候想在windows和linux上传或下载某个文件,其实有个很简单的方法就是rz,sz.首先你的Linux上需要安装安装lrzsz工具包,(如果没有安装请执行以下命令,安装 ...
- 使用xftp将文件上传至云服务器
一.在云服务器配置FTP服务: 1.在root权限下,通过如下命令安装Vsftp(以centos 系统为例): yum install -y vsftpd. 2. 在启动vsftpd服务之 ...
- 1.WF 4.5在项目中直接使用的问题
最近公司需要在互联网产品后台进行精细化流程管理,开发了一个基于WF 4.5框架的流程引擎与图形化设计器,让流程真正的跑了起来. 基于Visual Studio 直接设计流程主要面临以下的问题: 1.需 ...