题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=1087

Super Jumping! Jumping! Jumping!

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 30228    Accepted Submission(s): 13530

Problem Description
Nowadays, a kind of chess game called “Super Jumping! Jumping! Jumping!” is very popular in HDU. Maybe you are a good boy, and know little about this game, so I introduce it to you now.

The game can be played by two or more than two players. It consists of a chessboard(棋盘)and some chessmen(棋子), and all chessmen are marked by a positive integer or “start” or “end”. The player starts from start-point and must jumps into end-point finally. In the course of jumping, the player will visit the chessmen in the path, but everyone must jumps from one chessman to another absolutely bigger (you can assume start-point is a minimum and end-point is a maximum.). And all players cannot go backwards. One jumping can go from a chessman to next, also can go across many chessmen, and even you can straightly get to end-point from start-point. Of course you get zero point in this situation. A player is a winner if and only if he can get a bigger score according to his jumping solution. Note that your score comes from the sum of value on the chessmen in you jumping path.
Your task is to output the maximum value according to the given chessmen list.

 
Input
Input contains multiple test cases. Each test case is described in a line as follow:
N value_1 value_2 …value_N 
It is guarantied that N is not more than 1000 and all value_i are in the range of 32-int.
A test case starting with 0 terminates the input and this test case is not to be processed.
 
Output
For each case, print the maximum according to rules, and one line one case.
 
Sample Input
3 1 3 2
4 1 2 3 4
4 3 3 2 1
0
 
Sample Output
4
10
3
 
Author
lcy
 

题意:求递增段最大和

题解:类似于最长上升子序列求法,dp[i]表示,到i结尾的最大值,这道题要注意的问题是要设置一个max值保存每个点dp的最大值作为最后结果

if(mp[j]<mp[i])
dp[i] = max(dp[i],dp[j]+mp[i]);

代码;

 #include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int N = ;
int mp[N];
int dp[N];
int main()
{
int n;
while(~scanf("%d",&n))
{
if(n==) return ;
for(int i = ; i < n; i++)
{
scanf("%d",&mp[i]);
dp[i] = mp[i];
}
int sum = ;
for(int i = ; i < n; i++)
{
for(int j = ; j < i; j++)
{
if(mp[j]<mp[i])
dp[i] = max(dp[i],dp[j]+mp[i]);
//else dp[i] = max(dp[i],dp[j]);这么写是错误的因为遍历后面的点的时候仍会用到这个点的值。
}
sum = max(sum,dp[i]);
}
printf("%d\n",sum);
}
return ;
}

最长上升子序列(LIS) dp学习~3的更多相关文章

  1. 动态规划(DP),最长递增子序列(LIS)

    题目链接:http://poj.org/problem?id=2533 解题报告: 状态转移方程: dp[i]表示以a[i]为结尾的LIS长度 状态转移方程: dp[0]=1; dp[i]=max(d ...

  2. 1. 线性DP 300. 最长上升子序列 (LIS)

    最经典单串: 300. 最长上升子序列 (LIS) https://leetcode-cn.com/problems/longest-increasing-subsequence/submission ...

  3. 最长上升子序列LIS(51nod1134)

    1134 最长递增子序列 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出长度为N的数组,找出这个数组的最长递增子序列.(递增子序列是指,子序列的元素是递 ...

  4. 最长上升子序列(LIS)与最长公共子序列(LCS)

    1.LIS : 给定一个序列,求它的最长上升子序列(n<=2000) 第一种 O(n^2): dp[i] 为以i为开头的最长上升子序列长度 code1: #include<cstdio&g ...

  5. 【部分转载】:【lower_bound、upperbound讲解、二分查找、最长上升子序列(LIS)、最长下降子序列模版】

    二分 lower_bound lower_bound()在一个区间内进行二分查找,返回第一个大于等于目标值的位置(地址) upper_bound upper_bound()与lower_bound() ...

  6. 最长回文子序列LCS,最长递增子序列LIS及相互联系

    最长公共子序列LCS Lintcode 77. 最长公共子序列 LCS问题是求两个字符串的最长公共子序列 \[ dp[i][j] = \left\{\begin{matrix} & max(d ...

  7. 2.16 最长递增子序列 LIS

    [本文链接] http://www.cnblogs.com/hellogiser/p/dp-of-LIS.html [分析] 思路一:设序列为A,对序列进行排序后得到B,那么A的最长递增子序列LIS就 ...

  8. 题解 最长上升子序列 LIS

    最长上升子序列 LIS Description 给出一个 1 ∼ n (n ≤ 10^5) 的排列 P 求其最长上升子序列长度 Input 第一行一个正整数n,表示序列中整数个数: 第二行是空格隔开的 ...

  9. POJ - 1631 Bridging signals(最长上升子序列---LIS)

    题意:左右各n个端口,已知n组线路,要求切除最少的线路,使剩下的线路各不相交,按照左端口递增的顺序输入. 分析: 1.设左端口为l,右端口为r,因为左端口递增输入,l[i] < l[j](i & ...

  10. 一个数组求其最长递增子序列(LIS)

    一个数组求其最长递增子序列(LIS) 例如数组{3, 1, 4, 2, 3, 9, 4, 6}的LIS是{1, 2, 3, 4, 6},长度为5,假设数组长度为N,求数组的LIS的长度, 需要一个额外 ...

随机推荐

  1. C++11新语法糖之尾置返回类型

    C++11的尾置返回类型初衷是为了方便复杂函数的声明和定义,但是当复杂度稍微提升一些的时候很明显能注意到这种设计的作用微乎其微. 首先考虑如下代码: C++ //返回指向数组的指针 auto func ...

  2. SET与SPLIT

    所以说不要以为前一天考了什么后一天就不会考这类的东西了 出题人总是能竭尽所能 打破你的下限qaq naive split 详解blog来自ljz大佬:http://blog.csdn.net/ljz_ ...

  3. Python-字典dict对象方法总结

  4. ADG监控

    cx_Oracle环境配置 export ORACLE_BASE=/u01/app/oracle export ORACLE_HOME=$ORACLE_BASE/product/11.2.0/db_1 ...

  5. Webpack 2 视频教程 019 - Webpack 2 中配置多页面编译

    原文发表于我的技术博客 这是我免费发布的高质量超清「Webpack 2 视频教程」. Webpack 作为目前前端开发必备的框架,Webpack 发布了 2.0 版本,此视频就是基于 2.0 的版本讲 ...

  6. ES6(四)字符串的扩展

    1.字符的表示方式 最早在  \u0000-\uFFFF 之间的字符已经足够使用吗,每个字符占两个字节,超出范围,必须使用双字节形式表达, 即每个字符占四个字节.超出范围的字符,会被解读成  \uXX ...

  7. ActiveReports 6:如何升级旧版本的项目

    如果现在的项目使用的是ActiveReports for .NET 3.0,那么有两种升级方式: 一是使用ActiveReports 6.0附带的转换工具(参见下面"升级ActiveRepo ...

  8. 转载:DNS解析过程详解

    2015-09-20 此好文是转载,如有侵权联系我,立马删掉 DNS的几个基本概念: 一. 根域 就是所谓的“.”,其实我们的网址www.baidu.com在配置当中应该是www.baidu.com. ...

  9. python中的if __name__=='__main__': main()解析

    python中我们会看到一段代码是这样的: if __name__=='__main__': main() 这段代码的什么意思,我们可以知道代码的意思是如果__name__=='__main__'为T ...

  10. Heroku 如何上重置 PostgreSQL 数据库

      如果你要在 Heroku 上重置 PostgreSQL 数据库,可以使用以下命令 : $ heroku pg:reset DATABASE $ heroku run php artisan mig ...