Problem Description
In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is sorted in ascending order. For the input sequence 
9 1 0 5 4 ,
Ultra-QuickSort produces the output 
0 1 4 5 9 .
Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.
 
Input
The input contains several test cases. Every test case begins with a line that contains a single integer n < 500,000 -- the length of the input sequence. Each of the the following n lines contains a single integer 0 ≤ a[i] ≤ 999,999,999, the i-th input sequence element. Input is terminated by a sequence of length n = 0. This sequence must not be processed.
 
Output
For every input sequence, your program prints a single line containing an integer number op, the minimum number of swap operations necessary to sort the given input sequence.
 
Sample Input
5
9
1
0
5
4
3
1
2
3
0
 
Sample Output
6
0
 
 
很有意思的一道题,首先看图片就像一个通马桶的工具。
这里只提及树状数组。
 
 
这道题考的考点数据的处理,逆序数
所以思路来了,逆序数不就比大小吗,直接就标上序号,来一个排序加上数据处理,OK! 
数据处理的方法网上一般称之为离散化,我对离散化的理解就是简化问题,使一个连续(不可解)的问题变得离散(可解)。
本题考的就是数据,直接加和会爆炸。于是用123......n,表示这些数的价值就变得可解,这个过程算是离散化。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
#define MAX 500050
typedef long long ll;
int a[MAX];
int c[MAX]; struct node
{
int num;
ll v;
bool operator < (const node &b ) const //重载一下运算符,这里的const可加可不加,对于不同编译器是有区别的
{
return v<b.v;
} }b[MAX];
int lowbit(int i)
{
return i&(-i);
}
void add(int x,int v)
{
while(x<=MAX)
{
c[x]+=v;
x+=lowbit(x);
}
}
int sum(int x)
{
int res=0;
while(x>0)
{
res+=c[x];
x-=lowbit(x);
}
return res;
}
int main()
{
int n;
while(scanf("%d",&n),n)
{
for(int i=1;i<=n;i++)
{
scanf("%d",&b[i].v); b[i].num=i;
} sort(b+1,b+n+1); //值排序
memset(a,0,sizeof(a));
a[b[1].num]=1; //对于最小值当然标最小啦
ll ans=0; for(int i=2;i<=n;i++)
{
if(b[i].v==b[i-1].v)
a[b[i].num]=a[b[i-1].num];
else
a[b[i].num]=i; // 记录前面比他小的数。
}
memset(c,0,sizeof(c));
for(int i=1;i<=n;i++)
{
add(a[i],1);
ans+=sum(n)-sum(a[i]); }
printf("%lld\n",ans);
}
}

  

 

POJ-2299 Ultra-QuickSort (树状数组,离散化,C++)的更多相关文章

  1. POJ 2299 Ultra-QuickSort(树状数组+离散化)

    http://poj.org/problem?id=2299 题意:给出一组数,求逆序对. 思路: 这道题可以用树状数组解决,但是在此之前,需要对数据进行一下预处理. 这道题目的数据可以大到999,9 ...

  2. POJ - 2299 Ultra-QuickSort 【树状数组+离散化】

    题目链接 http://poj.org/problem?id=2299 题意 给出一个序列 求出 这个序列要排成有序序列 至少要经过多少次交换 思路 求逆序对的过程 但是因为数据范围比较大 到 999 ...

  3. poj 2299 Ultra-QuickSort(树状数组求逆序数+离散化)

    题目链接:http://poj.org/problem?id=2299 Description In this problem, you have to analyze a particular so ...

  4. poj 2299 Ultra-QuickSort(树状数组求逆序数)

    链接:http://poj.org/problem?id=2299 题意:给出n个数,求将这n个数从小到大排序,求使用快排的需要交换的次数. 分析:由快排的性质很容易发现,只需要求每个数的逆序数累加起 ...

  5. poj 2299 Ultra-QuickSort(树状数组)

    Ultra-QuickSort Time Limit: 7000MS   Memory Limit: 65536K Total Submissions: 67681   Accepted: 25345 ...

  6. POJ 2299 Ultra-QuickSort【树状数组 ,逆序数】

    题意:给出一组数,然后求它的逆序数 先把这组数离散化,大概就是编上号的意思--- 然后利用树状数组求出每个数前面有多少个数比它小,再通过这个数的位置,就可以求出前面有多少个数比它大了 这一篇讲得很详细 ...

  7. POJ 2299 【树状数组 离散化】

    题目链接:POJ 2299 Ultra-QuickSort Description In this problem, you have to analyze a particular sorting ...

  8. hdu4605 树状数组+离散化+dfs

    Magic Ball Game Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) ...

  9. BZOJ_5055_膜法师_树状数组+离散化

    BZOJ_5055_膜法师_树状数组+离散化 Description 在经历过1e9次大型战争后的宇宙中现在还剩下n个完美维度, 现在来自多元宇宙的膜法师,想偷取其中的三个维度为伟大的长者续秒, 显然 ...

  10. POJ 2299 树状数组+离散化求逆序对

    给出一个序列 相邻的两个数可以进行交换 问最少交换多少次可以让他变成递增序列 每个数都是独一无二的 其实就是问冒泡往后 最多多少次 但是按普通冒泡记录次数一定会超时 冒泡记录次数的本质是每个数的逆序数 ...

随机推荐

  1. zyUpload---照片上传并显示效果

    demo 下载连接

  2. Hadoop分布式集群搭建

    layout: "post" title: "Hadoop分布式集群搭建" date: "2017-08-17 10:23" catalog ...

  3. 线性代数-矩阵-转置 C和C++的实现

    原理解析: 本节介绍矩阵的转置.矩阵的转置即将矩阵的行和列元素调换,即原来第二行第一列(用C21表示,后同)与第一行第二列(C12)元素调换位置,原来c31与C13调换.即cij与cji调换 . (此 ...

  4. Java基础---继承、抽象、接口

    一.概述         继承是面向对象的一个重要特征.当多个类中存在相同属性和行为时,将这些内容抽取到单独一个类中,那么多个类无需再定义这些属性和行为,只要继那个类即可.这时,多个类可以称为子类,单 ...

  5. 认清Javascript的地位并编写合理的Javascript代码

    作为前端程序员,一定要认清javascript的地位,不要被它乱七八糟的特点所迷惑.JavaScript主要是用来操控和重新调整DOM,通过修改DOM结构,从而达到修改页面效果的目的. 要用这个中心思 ...

  6. adb命令安装apk 来学习吧

    1.将需要安装的apk放在platform-tools下 2.将手机和电脑连接,在cmd中输入 adb devices查看 3.使用adb命令安装apk,在cmd中输入:adb install apk ...

  7. 中科微北斗定位模组ATGM336H简介

    36H系列卫星定位模块 产品介绍 ATGM336H是高灵敏度,支持BDS/GPS/GLONASS卫星导航系统的单系统定位,以及任意组合的多系统联合定位的接收机模块.ATGM336H基于本公司自主独立研 ...

  8. Tomcat Cluster负载均衡

    author:JevonWei 版权声明:原创作品 Tomcat Cluster负载均衡 环境 tomcatA 172.16.253.108 tomcatB 172.16.253.105 代理服务器 ...

  9. jquery_mobile事件

    1 <!doctype html> 2 <html> 3 <head> 4 <meta charset="utf-8"> 5 < ...

  10. Linux修改文件permission属性

    列出文件属性 ls -al 修改文件属性为可读.可写 sudo chmod -c 777 <your file name>