作者:正龙(沪江Web前端开发工程师)

本文为原创文章,转载请注明作者及出处

上文“走进Node.js启动过程”中我们算是成功入门了。既然Node.js的强项是处理网络请求,那我们就来分析一个HTTP请求在Node.js中是怎么被处理的,以及JavaScript在这个过程中引入的开销到底有多大。

Node.js采用的网络请求处理模型是IO多路复用。它与传统的主从多线程并发模型是有区别的:只使用有限的线程数(1个),所以占用系统资源很少;操作系统级的异步IO支持,可以减少用户态/内核态切换,并且本身性能更高(因为直接与网卡驱动交互);JavaScript天生具有保护程序执行现场的能力(闭包),传统模型要么依赖应用程序自己保存现场,或者依赖线程切换时自动完成。当然,并不能说IO多路复用就是最好的并发模型,关键还是看应用场景。

我们来看“hello world”版Node.js网络服务器:

require('http').createServer((req, res) => {
res.end('hello world');
}).listen(3333);

代码思路分析

createServer([requestListener])

createServer创建了http.Server对象,它继承自net.Server。事实上,HTTP协议确实是基于TCP协议实现的。createServer的可选参数requestListener用于监听request事件;另外,它也监听connection事件,只不过回调函数是http.Server自己实现的。然后调用listen让http.Server对象在端口3333上监听连接请求并最终创建TCP对象,由tcp_wrap.h实现。最后会调用TCP对象的listen方法,这才真正在指定端口开始提供服务。我们来看看涉及到的所有JavaScript对象:

涉及到的C++类大多只是对libuv做了一层包装并公布给JavaScript,所以不在这里特别列出。我们有必要提一下http-parser,它是用来解析http请求/响应消息的,本身十分高效:没有任何系统调用,没有内存分配操作,纯C实现。

connection事件

当服务器接受了一个连接请求后,会触发connection事件。我们可以在这个结点获取到套接字文件描述符,之后就可以在这个文件描述符上做流式读或写,也就是所谓的全双工模式。上文提到net.Server的listen方法会创建TCP对象,并且提供TCP对象的onconnection事件回调方法;这里可以利用字段net.Server.maxConnections做过载保护,后面会讲到。并且会把clientHandle(本次连接的套接字文件描述符)封装成net.Socket对象,作为connection事件的参数。我们来看看调用过程:

tcp_wrap.cc

void TCPWrap::Listen(const FunctionCallbackInfo<Value>& args) {
int err = uv_listen(reinterpret_cast<uv_stream_t*>(&wrap->handle_),
backlog,
OnConnection);
args.GetReturnValue().Set(err);
}

OnConnectionconnection_wrap.cc中定义

    // ...省略不重要的代码
uv_stream_t* client_handle =
reinterpret_cast<uv_stream_t*>(&wrap->handle_);
// uv_accept can fail if the new connection has already been closed, in
// which case an EAGAIN (resource temporarily unavailable) will be
// returned.
if (uv_accept(handle, client_handle))
return; // Successful accept. Call the onconnection callback in JavaScript land.
argv[1] = client_obj;
// ...省略不重要的代码
wrap_data->MakeCallback(env->onconnection_string(), arraysize(argv), argv);

上文提到的clientHandle实际上是uv_accept的第二个参数,指服务当前连接的套接字文件描述符。net.Server的字段 _handle 会在JavaScript侧存储该字段。最后我们上一张流程图:

request事件

connection事件的回调函数connectionListener(lib/_http_server.js)中,首先获取http-parser对象,设置parser.onIncoming回调(马上会用到)。当连接套接字有数据到达时,调用http-parser.execute方法。http-parser在解析过程中会触发如下回调函数:

on_message_begin:在开始解析HTTP消息之前,可以设置http-parser的初始状态(注意http-parse有可能是复用的而不是重每次新创建)

on_url:解析请求的url,对响应消息不起作用

on_status, 解析状态码,只对http响应消息起作用

on_head_field, 头字段名称

on_head_value:头字段对应值

on_headers_complete:当所有头解析完成时

on_body:解析http消息中包含的payload

on_message_complete:解析工作结束

Node.js中Parser类是对http-parser的包装,它会注册上面所有的回调函数。同时,暴露给JavaScript5个事件:

kOnHeaders,kOnHeadersComplete,kOnBody,kOnMessageComplete,kOnExecute。在lib/_http_common.js中监听了这些事件。其中,当需要强制把头字段回传到JavaScript时会触发kOnHeaders;例如,头字段个数超过32,或者解析结束时仍然有头字段没有回传给JavaScript。当调用完http_parser_execute后触发kOnExecute。kOnHeadersComplete事件触发时,会调用parser的onIncoming回调函数。仅仅HTTP头解析完成之后,就会触发request事件。执行流程如下:

总结

说了那么多,其实仍然离不开最基础的套接字编程步骤,对于服务器端依次是:create、bind,listen、accept和close。客户端会经历create、bind、connect和close。想了解更多套接字编程的同学可以参考《UNIX网络编程》。

HTTP场景分析

上面提到的Node.js版hello world只涵盖了HTTP处理最基本的情况,但是也足以说明Node.js处理得非常简洁。现在,我们来分析一些典型的HTTP场景。

1. keep-alive

对于前端应用,HTTP请求瞬间数量比较多,但每个请求传输的数据一般不大;这时,用同一个TCP连接处理同一个用户发出的HTTP请求可以显著提高性能。但是keep-alive也不是万能的,如果用户每次只发起一个请求,它反而会因为延长连接的生存时间,浪费服务器资源。

针对同一个连接,Node.js会维持一个incoming队列和一个outgoing队列。应用程序通过监听request事件,可以访问ServerResponse和IncomingMessage对象,当请求处理完成之后(调用response.end()),ServerResponse会响应finish事件。如果它是本次连接上最后一个response对象,则准备关闭连接;否则,继续触发request事件。每个连接最长超时时间默认为2分钟,可以通过http.Server.setTimeout调整。

现在把我们的Node.js版hello world修改一下

var delay = [2000, 30, 500];
var i = 0;
require('http').createServer((req, res) => {
// 为了让请求模拟更真实,会调整每个请求的响应时间
setTimeout(() => {
res.end('hello world');
}, delay[i]);
i = (i+1)%(delay.length);
}).listen(3333, () => {
// listen的回调函数
console.log('listen at 3333');
});

客户端代码如下:

var http = require('http');

// 设置HTTP agent开启keep-alive模式
// 套接字的打开时间维持1分钟
var agent = new http.Agent({
keepAlive: true,
keepAliveMsecs: 60000
}); // 每次请求结束之后,都会再发起一次请求
// doReq每调用一次只会触发2次请求
function doReq(again, iter) {
let request = http.request({
hostname: '192.168.1.10',
port: 3333,
agent:agent
}, (res) => {
console.log(`${new Date().valueOf()} ${iter} ${again} Headers: ${JSON.stringify(res.headers)}`);
console.log(request.socket.localPort);
// 设置解析响应的编码格式
res.setEncoding('utf8');
// 接收响应
res.on('data', (chunk) => {
console.log(`${new Date().valueOf()} ${iter} ${again} Body: ${chunk}`);
});
if (again) doReq(false, iter);
});
// 发起请求
request.end();
} for (let i = 0; i < 3; i++) {
doReq(true, i);
}

套接字复用的时序如下:

2. Expect头

如果客户端在发送POST请求之前,由于传输的数据量比较大,期望向服务器确认请求是否能被处理;这种情况下,可以先发送一个包含头Expect:100-continue的http请求。如果服务器能处理此请求,则返回响应状态码100(Continue);否则,返回417(Expectation Failed)。默认情况下,Node.js会自动响应状态码100;同时,http.Server会触发事件checkContinue和checkExpectation来方便我们做特殊处理。具体规则是:当服务器收到头字段Expect时:如果其值为100-continue,会触发checkContinue事件,默认行为是返回100;如果值为其它,会触发checkExpectation事件,默认行为是返回417。

例如,我们通过curl发送HTTP请求:

curl -vs --header "Expect:100-continue" http://localhost:3333

交互过程如下

> GET / HTTP/1.1
> Host: localhost:3333
> User-Agent: curl/7.49.1
> Accept: */*
> Expect:100-continue
>
< HTTP/1.1 100 Continue
< HTTP/1.1 200 OK
< Date: Mon, 03 Apr 2017 14:15:47 GMT
< Connection: keep-alive
< Content-Length: 11
<

我们接收到2个响应,分别是状态码100和200。前一个是Node.js的默认行为,后一个是应用程序代码行为。

3. HTTP代理

在实际开发时,用到http代理的机会还是挺多的,比如,测试说线上出bug了,触屏版页面显示有问题;我们一般第一时间会去看api返回是否正常,这个时候在手机上设置好代理就能轻松捕获HTTP请求了。老牌的代理工具有fiddler,charles。其实,nodejs下也有,例如node-http-proxyanyproxy。基本思路是监听request事件,当客户端与代理建立HTTP连接之后,代理会向真正请求的服务器发起连接,然后把两个套接字的流绑在一起。我们可以实现一个简单的代理服务器:

var http = require('http');
var url = require('url'); http.createServer((req, res) => {
// request回调函数
console.log(`proxy request: ${req.url}`);
var urlObj = url.parse(req.url);
var options = {
hostname: urlObj.hostname,
port: urlObj.port || 80,
path: urlObj.path,
method: req.method,
headers: req.headers
};
// 向目标服务器发起请求
var proxyRequest = http.request(options, (proxyResponse) => {
// 把目标服务器的响应返回给客户端
res.writeHead(proxyResponse.statusCode, proxyResponse.headers);
proxyResponse.pipe(res);
}).on('error', () => {
res.end();
});
// 把客户端请求数据转给中间人请求
req.pipe(proxyRequest);
}).listen(8089, '0.0.0.0');

验证下是否真的起作用,curl通过代理服务器访问我们的“hello world”版Node.js服务器:

curl -x http://192.168.132.136:8089 http://localhost:3333/

优化策略

Node.js在实现HTTP服务器时,除了利用高性能的http-parser,自身也做了些性能优化。

1. http_parser对象缓存池

http-parser对象处理完一个请求之后不会被立即释放,而是被放入缓存池(/lib/internal/freelist),最多缓存1000个http-parser对象。

2. 预设HTTP头总数

HTTP协议规范并没有限定可以传输的HTTP头总数上限,http-parser为了避免动态分配内存,设定上限默认值是32。其他web服务器实现也有类似设置;例如,apache能处理的HTTP请求头默认上限(LimitRequestFields)是100。如果请求消息中头字段真超过了32个,Node.js也能处理,它会把已经解析的头字段通过事件kOnHeaders保存到JavaScript这边然后继续解析。 如果头字段不超过32个,http-parser会直接处理完并触发on_headers_complete一次性传递所有头字段;所以我们在利用Node.js作为web服务器时,应尽量把头字段控制在32个之内。

3. 过载保护

理论上,Node.js允许的同时连接数只与进程可以打开的文件描述符上限有关。但是随着连接数越来越多,占用的系统资源也越来越多,很有可能连正常的服务都无法保证,甚至可能拖垮整个系统。这时,我们可以设置http.Server的maxConnections,如果当前并发量大于服务器的处理能力,则服务器会自动关闭连接。另外,也可以设置socket的超时时间为可接受的最长响应时间。

性能实测

为了简单分析下Node.js引入的开销,现在基于libuv和http_parser编写一个纯C的HTTP服务器。基本思路是,在默认事件循环队列上监听指定TCP端口;如果该端口上有请求到达,会在队列上插入一个一个的任务;当这些任务被消费时,会执行connection_cb。见核心代码片段:

int main() {
// 初始化uv事件循环
loop = uv_default_loop();
uv_tcp_t server;
struct sockaddr_in addr;
// 指定服务器监听地址与端口
uv_ip4_addr("192.168.132.136", 3333, &addr); // 初始化TCP服务器,并与默认事件循环绑定
uv_tcp_init(loop, &server);
// 服务器端口绑定
uv_tcp_bind(&server, (const struct sockaddr*)&addr, 0);
// 指定连接处理回调函数connection_cb
// 256为TCP等待队列长度
int r = uv_listen((uv_stream_t*)&server, 256, connection_cb); // 开始处理默认时间循环上的消息
// 如果TCP报错,事件循环也会自动退出
return uv_run(loop, UV_RUN_DEFAULT);
}

connection_cb调用uv_accept会负责与发起请求的客户端实际建立套接字,并注册流操作回调函数read_cb:

void connection_cb(uv_stream_t* server, int status) {
uv_tcp_t* client = (uv_tcp_t*)malloc(sizeof(uv_tcp_t));
uv_tcp_init(loop, client);
// 与客户端建立套接字
uv_accept(server, (uv_stream_t*)client);
uv_read_start((uv_stream_t*)client, alloc_buffer, read_cb);
}

上文中read_cb用于读取客户端请求数据,并发送响应数据:

void read_cb(uv_stream_t* stream, ssize_t nread, const uv_buf_t* buf) {
if (nread > 0) {
memcpy(reqBuf + bufEnd, buf->base, nread);
bufEnd += nread;
free(buf->base);
// 验证TCP请求数据是否是合法的HTTP报文
http_parser_execute(parser, &settings, reqBuf, bufEnd);
uv_write_t* req = (uv_write_t*)malloc(sizeof(uv_write_t));
uv_buf_t* response = malloc(sizeof(uv_buf_t));
// 响应HTTP报文
response->base = "HTTP/1.1 200 OK\r\nConnection:close\r\nContent-Length:11\r\n\r\nhello world\r\n\r\n";
response->len = strlen(response->base);
uv_write(req, stream, response, 1, write_cb);
} else if (nread == UV_EOF) {
uv_close((uv_handle_t*)stream, close_cb);
}
}

全部源码请参见simple HTTP server。我们使用apache benchmark来做压力测试:并发数为5000,总请求数为100000。

ab -c 5000 -n 100000 http://192.168.132.136:3333/

测试结果如下: 0.8秒(C) vs  5秒(Node.js)

我们再看看内存占用,0.6MB(C) vs  51MB(Node.js)

Node.js虽然引入了一些开销,但是从代码实现行数上确实要简洁很多。

iKcamp原创新书《移动Web前端高效开发实战》已在亚马逊、京东、当当开售。

走进Node.js 之 HTTP实现分析的更多相关文章

  1. 系列3|走进Node.js之多进程模型

    文:正龙(沪江网校Web前端工程师) 本文原创,转载请注明作者及出处 之前的文章"走进Node.js之HTTP实现分析"中,大家已经了解 Node.js 是如何处理 HTTP 请求 ...

  2. Node.js express路由简单分析

    这2天看了一点node+express的路由源码有了一点眉目,总结一下 对于app.get, 首先给出一张类图: 图1 注意每个路由有一个stack,这个stack中存放了Layer. 路由系统内有三 ...

  3. Node.js大众点评爬虫

    大众点评上有很多美食餐馆的信息,正好可以拿来练练手Node.js. 1. API分析 大众点评开放了查询商家信息的API,这里给出了城市与cityid之间的对应关系,链接http://m.api.di ...

  4. Node.js的process.nextTick(callback)理解

    Node.js是单线程的,基于事件循环,非阻塞 IO的.事件循环中使用一个事件队列,在每个时间点上,系统只会处理一个事件,即使电脑有多个CPU核心,也无法同时并行的处理多个事件.因此,node.js适 ...

  5. 完全面向于初学者的Node.js指南

    新的上班时间是周二至周六,工作之余当然要坚持学习啦. 希望这篇文章能解决你这样一个问题:“我现在已经下载好Node.Js了,该做些什么呢?” 原文URL:http://blog.modulus.io/ ...

  6. 10+ 最佳的 Node.js 教程和实例

    如果你正在找Node.js的学习资料及指南,那么请继续(阅读),我们的教程将会覆盖即时聊天应用.API服务编写.投票问卷应用.人物投票APP.社交授权. Node.js on Raspberry Pi ...

  7. 如何定位 Node.js 的内存泄漏

    基础知识 Node.js 进程的内存管理,都是有 V8 自动处理的,包括内存分配和释放.那么 V8 什么时候会将内存释放呢? 在 V8 内部,会为程序中的所有变量构建一个图,来表示变量间的关联关系,当 ...

  8. 高性能Web服务端 PHP vs Node.js vs Nginx-Lua 的对比分析

    1. ngx_lua nodejs php 比较 我在研究一阵子ngx_lua之后发现lua语法和js真的很像,同时ngx_lua模型也是单线程的异步的事件驱动的,工作原理和nodejs相同,代码甚至 ...

  9. node.js基础模块http、网页分析工具cherrio实现爬虫

    node.js基础模块http.网页分析工具cherrio实现爬虫 一.前言      说是爬虫初探,其实并没有用到爬虫相关第三方类库,主要用了node.js基础模块http.网页分析工具cherri ...

随机推荐

  1. django开发总结

    首先我用的是虚拟机,python3.6+django1.11.0: 为了版本的一致,以及在环境种更好的体验,我们需要的是先用虚拟环境virtualenv其命令有: 1.创建环境(name是虚拟环境名字 ...

  2. Markdown 简单指北

    Markdown is intended to be as easy-to-read and easy-to-write as is feasible. Markdown 简介 Markdown是一种 ...

  3. WlMAP:突破内网端口转发映射工具

    使用说明 Wlmap包括服务端程序和客户端程序两部分 服务端程序Wlmaps一般架设到其它用户可以访问到的地方例如internet,它主要用来记录客户端信息以及端口映射信息,并且转发用户和客户端之间数 ...

  4. 震惊!WIN2003存在后门大全,提权成功率高

     从某种意义上说,服务器被攻击是不可避免的,甚至被控制也情有可原.但绝对不能容忍的是,服务器被植入后门,攻击者如入无人之境,而管理者去浑然不觉.本文将对当前比较流行的后门技术进行解析,知己知彼方能杜绝 ...

  5. C/C++资料网站

    1.C语言基础知识讲解 http://c-faq-chn.sourceforge.net/ccfaq/node1.html 2.C++参考手册中文版 http://zh.cppreference.co ...

  6. 查询session内容

    Enumeration enumsession = request.getSession().getAttributeNames(); while(enumsession.hasMoreElement ...

  7. MyBatis框架——关系映射(一对多、多对多、多对一查询)

    关系映射 一.映射(多)对一.(一)对一的关联关系 1).使用列的别名 ①.若不关联数据表,则可以得到关联对象的id属性 ②.若还希望得到关联对象的其它属性.则必须关联其它的数据表 1.创建表: 员工 ...

  8. UI设计基础知识和JavaScript

    [PS基础案例] 人物修图.调整画布大小,建立3个图层,并列放到画布中,用修补工具修掉中间的人物,再用橡皮章盖掉边缘的人物,然后扣出人物,放上新的蓝天,用橡皮擦调整透明度,擦掉水天交接的地方,然后调整 ...

  9. sleep(强制等待)和implicitly_wait(隐式等待 )区别与理解---基于python

    我们在进行selenium页面自动化的测试的时候,由于需要等待目标页面的加载或由于网络或硬件配置导致的页面加载等待,经常会用到sleep,但是由于在不同场景下对于sleep时间的估计无法十分准确,导致 ...

  10. poj 3694双联通缩点+LCA

    题意:给你一个无向连通图,每次加一条边后,问图中桥的数目. 思路:先将图进行双联通缩点,则缩点后图的边就是桥,然后dfs记录节点深度,给出(u,v)使其节点深度先降到同一等级,然后同时降等级直到汇合到 ...